Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭石通zh_TW
dc.contributor.advisorShih-Tong Jengen
dc.contributor.author金禹圻zh_TW
dc.contributor.authorYu-Chi Kingen
dc.date.accessioned2021-07-10T21:52:53Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-19-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAng, L.H., and Deng, X.W. (1994). Regulatory hierarchy of photomorphogenic loci: Allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant cell 6: 613-628.
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1: 213-222.
Ashton, A.R. (2011). Guanylyl cyclase activity in plants? Proc. Natl. Acad. Sci. USA 108: E96; author reply E97-E98.
Bai, S., Li, M., Yao, T., Wang, H., Zhang, Y., Xiao, L., Wang, J., Zhang, Z., Hu, Y., Liu, W., and He, Y. (2012). Nitric oxide restrain root growth by DNA damage induced cell cycle arrest in Arabidopsis thaliana. Nitric Oxide 26: 54-60.
Bai, S.L., Yao, T., Li, M.M., Guo, X.M., Zhang, Y.C., Zhu, S.W., and He, Y.K. (2014). PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol. Plant 7: 616-625.
Bellini, C., Pacurar, D.I., and Perrone, I. (2014). Adventitious roots and lateral roots: Similarities and differences. Annu. Rev. Plant Biol. 65: 639-666.
Besson-Bard, A., Pugin, A., and Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59: 21-39.
Bowler, C., Neuhaus, G., Yamagata, H., and Chua, N.H. (1994). Cyclic-GMP and calcium mediate phytochrome phototransduction. Cell 77: 73-81.
Chen, X.B., Yao, Q.F., Gao, X.H., Jiang, C.F., Harberd, N.P., and Fu, X.D. (2016). Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26:640-646.
Cluis, C.P., Mouchel, C.F., and Hardtke, C.S. (2004). The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 38: 332-347.
Cortleven, A., and Schmulling, T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66: 4999-5013.
Dangl, J.L., and Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.
Delledonne, M., Xia, Y.J., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588.
Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, T., Costantino, P., and Sabatini, S. (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science 322: 1380-1384.
Donaldson, L., Ludidi, N., Knight, M.R., Gehring, C., and Denby, K. (2004). Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett. 569: 317-320.
Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328-10333.
Ederli, L., Meier, S., Borgogni, A., Reale, L., Ferranti, F., Gehring, C., and Pasqualini, S. (2008). cGMP in ozone and NO dependent responses. Plant Signal. Behav. 3: 36-37.
Essah, P.A., Davenport, R., and Tester, M. (2003). Sodium influx and accumulation in Arabidopsis. Plant Physiol. 133: 307-318.
Finn, J.T., Grunwald, M.E., and Yau, K.W. (1996). Cyclic nucleotide-gated ion channels: An extended family with diverse functions. Annu. Rev. Physiol. 58: 395-426.
Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., and Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.
Franklin, K.A., Toledo-Ortiz, G., Pyott, D.E., and Halliday, K.J. (2014). Interaction of light and temperature signalling. J. Exp. Bot. 65: 2859-2871.
Gangappa, S.N., and Botto, J.F. (2016). The multifaceted roles of HY5 in plant growth and development. Mol. Plant 9: 1353-1365.
Guo, F.Q., Okamoto, M., and Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100-103.
Gupta, K.J., Fernie, A.R., Kaiser, W.M., and van Dongen, J.T. (2011). On the origins of nitric oxide. Trends Plant Sci. 16: 160-168.
Hardman, J.G., and Sutherland, E.W. (1969). Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine trihosphate. J. Biol. Chem. 244: 6363-6370.
Hardtke, C.S., Gohda, K., Osterlund, M.T., Oyama, T., Okada, K., and Deng, X.W. (2000). HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J. 19: 4997-5006.
He, Y., Tang, R.H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., Fiorani, F., Jackson, R.B., Crawford, N.M., and Pei, Z.M. (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305: 1968-1971.
Hsu, F.C., Chou, M.Y., Chou, S.J., Li, Y.R., Peng, H.P., and Shih, M.C. (2013). Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant cell 25: 2699-2713.
Hu, Y.M., Vandenbussche, F., and Van Der Straeten, D. (2017). Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. Planta 245: 467-489.
Huang, P., Chung, M.S., Ju, H.W., Na, H.S., Lee, D.J., Cheong, H.S., and Kim, C.S. (2011). Physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 1, a plasma membrane protein involved in oxidative stress. J. Plant Res. 124: 699-705.
Irving, H.R., Kwezi, L., Wheeler, J., and Gehring, C. (2012). Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks. Plant Signal. Behav. 7: 201-204.
Ishida, T., Hattori, S., Sano, R., Inoue, K., Shirano, Y., Hayashi, H., Shibata, D., Sato, S., Kato, T., Tabata, S., Okada, K., and Wada, T. (2007). Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19: 2531-2543.
Ishikawa, E., Ishikawa, S., Davis, J.W., and Sutherland, E.W. (1969). Determination of guanosine 3',5'-monophosphate in tissues and of guanyl cyclase in rat intestine. J. Biol. Chem. 244: 6371-6376.
Isner, J.C., Nuehse, T., and Maathuis, F.J.M. (2012). The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J. Exp. Bot. 63: 3199-3205.
Jaillais, Y., and Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 17: 642-645.
Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F., and Grp, b.R. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111.
Ji, H.T., Wang, S.F., Li, K.X., Szakonyi, D., Koncz, C., and Li, X. (2015). PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis. Plant J. 81: 399-412.
Jiroutova, P., Oklestkova, J., and Strnad, M. (2018). Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int. J. Mol. Sci. 19: 3283-3296.
Keyster, M., Klein, A., and Ludidi, N. (2010). Endogenous NO levels regulate nodule functioning: Potential role of cGMP in nodule functioning? Plant Signal. Behav. 5: 1679-1681.
Kloth, K.J., Wiegers, G.L., Busscher-Lange, J., van Haarst, J.C., Kruijer, W., Bouwmeester, H.J., Dicke, M., and Jongsma, M.A. (2016). AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J. Exp. Bot. 67: 3383-3396.
Kobayashi, K., Baba, S., Obayashi, T., Sato, M., Toyooka, K., Keranen, M., Aro, E.M., Fukaki, H., Ohta, H., Sugimoto, K., and Masuda, T. (2012). Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24: 1081-1095.
Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988). The primary structure of the 70 kDa subunit of bovine soluble guanylate-cyclase. FEBS Lett. 239: 29-34.
Kwezi, L., Meier, S., Mungur, L., Ruzvidzo, O., Irving, H., and Gehring, C. (2007). The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2: e449.
Kwezi, L., Ruzvidzo, O., Wheeler, J.I., Govender, K., Iacuone, S., Thompson, P.E., Gehring, C., and Irving, H.R. (2011). The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J. Biol. Chem. 286: 22580-22588.
Lau, O.S., and Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13: 571-577.
Lee, H.J., Ha, J.H., Kim, S.G., Choi, H.K., Kim, Z.H., Han, Y.J., Kim, J.I., Oh, Y., Fragoso, V., Shin, K., Hyeon, T., Choi, H.G., Oh, K.H., Baldwin, I.T., and Park, C.M. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci. Signal. 9: ra452.
Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant cell 19: 731-749.
Leinders-Zufall, T., and Zufall, F. (1995). Block of cyclic nucleotide-gated channels in salamander olfactory receptor neurons by the guanylyl cyclase inhibitor LY83583. J. Neurophysiol. 74: 2759-2762.
Li, J., Wang, X., Zhang, Y., Jia, H., and Bi, Y. (2011). cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. Planta 234: 709-722.
Li, J.S., and Jia, H.L. (2013). cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. Plant Physiol. Bioch. 66: 105-117.
Li, J.T., Zhao, Y., Chu, H.W., Wang, L.K., Fu, Y.R., Liu, P., Upadhyaya, N., Chen, C.L., Mou, T.M., Feng, Y.Q., Kumar, P., and Xu, J. (2015). SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genet. 11: e1005464.
Li, S.W., Xue, L.G., Xu, S.J., Feng, H.Y., and An, L.Z. (2009). Mediators, genes and signaling in adventitious rooting. Bot. Rev. 75: 230-247.
Lin, C.C., Chu, C.F., Liu, P.H., Lin, H.H., Liang, S.C., Hsu, W.E., Lin, J.S., Wang, H.M., Chang, L.L., Chien, C.T., and Jeng, S.T. (2011). Expression of an Oncidium gene encoding a patatin-like protein delays flowering in Arabidopsis by reducing gibberellin synthesis. Plant Cell Physiol. 52: 421-435.
Ludidi, N., and Gehring, C. (2003). Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J. Biol. Chem. 278: 6490-6494.
Lv, B.S., Tian, H.Y., Zhang, F., Liu, J.J., Lu, S.C., Bai, M.Y., Li, C.Y., and Ding, Z.J. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet. 14: e1007144.
Ma, B., Yin, C.C., He, S.J., Lu, X., Zhang, W.K., Lu, T.G., Chen, S.Y., and Zhang, J.S. (2014). Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet. 10: e1004701.
Maathuis, F.J.M. (2006). cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J. 45: 700-711.
Maathuis, F.J.M., and Sanders, D. (2001). Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol. 127: 1617-1625.
Meier, S., Ruzvidzo, O., Morse, M., Donaldson, L., Kwezi, L., and Gehring, C. (2010). The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5: e8904.
Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., and Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2: ra45.
Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K.H., and Gupta, K.J. (2013). Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants 5: pls052.
Nakane, M., Saheki, S., Kuno, T., Ishii, K., and Murad, F. (1988). Molecular-cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate-cyclase from rat lung. Biochem. Bioph. Res. Co. 157: 1139-1147.
Nakane, M., Arai, K., Saheki, S., Kuno, T., Buechler, W., and Murad, F. (1990). Molecular-cloning and expression of cDNAs coding for soluble guanylate-cyclase from rat lung. J. Biol. Chem. 265: 16841-16845.
Nan, W.B., Wang, X.M., Yang, L., Hu, Y.F., Wei, Y.T., Liang, X.L., Mao, L.N., and Bi, Y.R. (2014). Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J. Exp. Bot. 65: 1571-1583.
Neill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J., and Wilson, I. (2008). Nitric oxide evolution and perception. J. Exp. Bot. 59: 25-35.
Ohnishi, N., Himi, E., Yamasaki, Y., and Noda, K. (2008). Differential expression of three ABA-insensitive five binding protein (AFP)-like genes in wheat. Genes Genet. Syst. 83: 167-177.
Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466.
Pagnussat, G.C., Lanteri, M.L., and Lamattina, L. (2003). Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132: 1241-1248.
Penson, S.P., Schuurink, R.C., Fath, A., Gubler, F., Jacobsen, J.V., and Jones, R.L. (1996). cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8: 2325-2333.
Perilli, S., Di Mambro, R., and Sabatini, S. (2012). Growth and development of the root apical meristem. Curr. Opin. Plant Biol. 15: 17-23.
Pharmawati, M., Maryani, M.M., Nikolakopoulos, T., Gehring, C.A., and Irving, H.R. (2001). Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol. Bioch. 39: 385-394.
Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y.C., Ryan, C.A., and Berkowitz, G.A. (2010). Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc. Natl. Acad. Sci. USA 107: 21193-21198.
Qin, H., and Huang, R.F. (2018). Auxin controlled by ethylene steers root development. Int. J. Mol. Sci. 19: 3656.
Rubio, F., Flores, P., Navarro, J.M., and Martinez, V. (2003). Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci. 165: 1043-1049.
Ruckle, M.E., DeMarco, S.M., and Larkin, R.M. (2007). Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19: 3944-3960.
Sagi, M., and Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141: 336-340.
Schrammel, A., Behrends, S., Schmidt, K., Koesling, D., and Mayer, B. (1996). Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol. Pharmacol. 50: 1-5.
Schultz, G., Bohme, E., and Munske, K. (1969). Guanyl cyclase. Determination of enzyme activity. Life Sci. 8: 1323-1332.
Sengupta, D., and Reddy, A.R. (2018). Simplifying the root dynamics: from complex hormone-environment interactions to specific root architectural modulation. Plant Growth Regul. 85: 337-349.
Shi, H.T., Liu, W., Wei, Y.X., and Ye, T.T. (2017). Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J. Exp. Bot. 68: 1239-1249.
Simon-Plas, F., Elmayan, T., and Blein, J.P. (2002). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 31: 137-147.
Singh, N., Swain, S., Singh, A., and Nandi, A.K. (2018). AtOZF1 positively regulates defense against bacterial pathogens and NPR1-independent salicylic acid signaling. Mol. Plant Microbe In. 31: 323-333.
Skirycz, A., Radziejwoski, A., Busch, W., Hannah, M.A., Czeszejko, J., Kwasniewski, M., Zanor, M.I., Lohmann, J.U., De Veylder, L., Witt, I., and Mueller-Roeber, B. (2008). The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J. 56: 779-792.
Song, Y.H., Yoo, C.M., Hong, A.P., Kim, S.H., Jeong, H., Shin, S.Y., Kim, H.J., Yun, D.J., Lim, C.O., Bahk, J.D., Lee, S.Y., Nagao, R.T., Key, J.L., and Hong, J.C. (2008). DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STF1 and LONG HYPOCOTYL5 proteins. Plant Physiol. 146: 1862-1877.
Street, I.H., Aman, S., Yan, Z.B., Ramzan, A., Wang, X.M., Shakeel, S.N., Kieber, J.J., and Schaller, G.E. (2015). Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol. 169: 338-350.
Sun, L., Zhang, A., Zhou, Z., Zhao, Y., Yan, A., Bao, S., Yu, H., and Gan, Y. (2015). GLABROUS INFLORESCENCE STEMS3 (GIS3) regulates trichome initiation and development in Arabidopsis. New Phytol. 206: 220-230.
Swiezawska, B., Jaworski, K., Szewczuk, P., Pawelek, A., and Szmidt-Jaworska, A. (2015). Identification of a Hippeastrum hybridum guanylyl cyclase responsive to wounding and pathogen infection. J. Plant Physiol. 189: 77-86.
Szmidt-Jaworska, A., Jaworski, K., Pawełek, A., and Kopcewicz, J. (2009). Molecular cloning and characterization of a guanylyl cyclase, PnGC-1, involved in light signaling in Pharbitis nil. J. Plant Growth Regul. 28: 367-380.
Tan, H.J., Man, C., Xie, Y., Yan, J.J., Chu, J.F., and Huang, J.R. (2019). A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis. Mol. Plant 12: 521-537.
Tanimoto, E. (2005). Regulation of root growth by plant hormones - Roles for auxin and gibberellin. Crit. Rev. Plant Sci. 24: 249-265.
Torres, M.A., and Dangl, J.L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8: 397-403.
Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K.E., and Jones, J.D.G. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91(phox)). Plant J. 14: 365-370.
Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616.
Van der Ent, S., Verhagen, B.W.M., Van Doorn, R., Bakker, D., Verlaan, M.G., Pel, M.J.C., Joosten, R.G., Proveniers, M.C.G., Van Loon, L.C., Ton, J., and Pieterse, C.M.J. (2008). MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in arabidopsis. Plant Physiol. 146: 1293-1304.
Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Van Der Straeten, D., and Ahmad, M. (2007). HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J. 49: 428-441.
Vaseva, I.I., Qudeimat, E., Potuschak, T., Du, Y.L., Genschik, P., Vandenbussche, F., and Van Der Straeten, D. (2018). The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc. Natl. Acad. Sci. USA 115: E4130-E4139.
Volotovski, I.D., Sokolovsky, S.G., Molchan, O.V., and Knight, M.R. (1998). Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol. 117: 1023-1030.
Wang, P.C., Du, Y.Y., An, G.Y., Zhou, Y., Miao, C., and Song, C.P. (2006). Analysis of global expression profiles of Arabidopsis genes under abscisic acid and H2O2 applications. J. Integr. Plant Biol. 48: 62-74.
Wang, X., Li, J., Liu, J., He, W., and Bi, Y. (2010). Nitric oxide increases mitochondrial respiration in a cGMP-dependent manner in the callus from Arabidopsis thaliana. Nitric Oxide 23: 242-250.
Weiste, C., Iven, T., Fischer, U., Onate-Sanchez, L., and Droge-Laser, W. (2007). In planta ORFeome analysis by large-scale over-expression of GATEWAYⓇ-compatible cDNA clones: Screening of ERF transcription factors involved in abiotic stress defense. Plant J. 52: 382-390.
White, A.A., and Aurbach, G.D. (1969). Detection of guanyl cyclase in mammalian tissues. Biochim. Biophys. Acta 191: 686-697.
Wild, M., and Achard, P. (2013). The DELLA protein RGL3 positively contributes to jasmonate/ethylene defense responses. Plant Signal. Behav. 8: e23891.
Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D.G., and Doke, N. (2003). Nicotiana benthamiana gp91(phox) homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15: 706-718.
Yuan, J., Liakat Ali, M., Taylor, J., Liu, J., Sun, G., Liu, W., Masilimany, P., Gulati-Sakhuja, A., and Pauls, K.P. (2008). A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Theor. Appl. Genet. 116: 465-479.
Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P., and Durner, J. (2006). Plant nitric oxide synthase: A never-ending story? Trends Plant Sci. 11: 524-525.
Zhang, Z.X., Wei, L.Y., Zou, X.L., Tao, Y.S., Liu, Z.J., and Zheng, Y.L. (2008). Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann. Bot. 102: 509-519.
Zhao, Y., Brandish, P.E., DiValentin, M., Schelvis, J.P., Babcock, G.T., and Marletta, M.A. (2000). Inhibition of soluble guanylate cyclase by ODQ. Biochem. 39: 10848-10854.
Zheng, H.Y., Pan, X.Y., Deng, Y.X., Wu, H.M., Liu, P., and Li, X.X. (2016). AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci. Rep. 6: 24778.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77254-
dc.description.abstract3’,5’-cyclic guanyl monophosphate(cGMP)是一個重要的二級訊息傳遞者(secondary messenger),在動物和真菌中已經發現一系列位在cGMP下游的作用者 (effectors),而在植物中,cGMP也被發現參與許多逆境的訊息調控。利用Dröge-Laser實驗室所建構的過量表現bzip轉錄因子的阿拉伯芥種子庫,藉由處理guanylyl cyclase抑制劑1H- (1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one (ODQ),發現轉錄因子ELONGATED HYPOCOTYL 5(HY5)可能為cGMP下游調控的轉錄因子之一,在根的延長中扮演正調控者。利用已發表的文獻,以cGMP下游的轉錄因子微陣列晶片(microarray)資料和受HY5調控的轉錄因子ChIP-chip資料交叉比對,發現可能的下游轉錄因子為GIS3)、OZF1、OBP1、WRKY22以及RGL3等。藉由quantitative real-time PCR(qRT-PCR)檢驗這些基因與cGMP和HY5的相關性,發現GIS3可能是cGMP調控根部生長發育途徑的正調控因子。GIS3和HY5的表現都會受到ODQ的抑制及cGMP的誘導。前人研究指出HY5蛋白質的穩定性會受到磷酸化影響,且未磷酸化的HY5蛋白質活性也比較強。本研究發現GIS3的表現也會受到okadaic acid(OKA,protein phosphatase抑制劑)的抑制及staurosporine(STA,protein kinase抑制劑)的誘導,符合之前對HY5活性的研究結果。同時發現HY5和GIS3都會受到外加一氧化氮(nitric oxide,NO)的誘導,而在NO缺乏的情況下,HY5和GIS3的表現也都會受到抑制,因此NO可能參與在cGMP-HY5-root的調控路徑。同時外加cGMP可以回復Atnoa1(Arabidopsis nitric oxide associated 1,內生NO缺乏突變株)中因為NO缺乏所導致的HY5和GIS3表現抑制,此結果證明NO在cGMP調控的根生長發育的上游。而在處理hydrogen peroxide(H2O2)和diphenylene iodonium(DPI,NADPH oxidase抑制劑)之後,HY5的表現不會被影響,然而GIS3的表現會被抑制,而在HY5OE轉殖株中H2O2和DPI的處理也會抑制GIS3表現,ODQ則不會抑制GIS3表現,這個結果表示NADPH oxidase所生成的H2O2可能位於HY5的下游和GIS3上游, 進而參與NO-cGMP-HY5-GIS3所調控的根生長訊息傳遞路徑。zh_TW
dc.description.abstract3’,5’-cyclic guanyl monophosphate (cGMP) is an important secondary messenger in both animals and plants. In the presence of 1H- (1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one (ODQ), a guanylyl cyclase inhibitor, the root lengths of Arabidopsis become short, indicating the requirement of cGMP for root development. By screening Arabidopsis seeds overexpressing bZIP transcription factors from Dröge-Laser’s Lab in the presence of ODQ, the root lengths of ELONGATED HYPOCOTYL 5 (HY5) overexpression transgenic plants were longer than that of wild type. HY5 expressed was significantly induced after cGMP treatment and was inhibited after ODQ treatment, demonstrating that the expression of HY5 was stimulated by cGMP. Arabidopsis genes induced by cGMP and induced by HY5 were published separately. Conbimed these two microarray data, five genes GIS3, RGL3, WRKY22, OBP1, and OZF1 were chosen for investigating the downstream signal of HY5. GIS3 were down-regulated in hy5 plant and up-regulated in HY5OE plant. GIS3 was also induced after cGMP treatment and inhibited by ODQ. Furthermore, the expression of GIS3 was inhibited after okadaic acid (OKA), a protein phosphatase inhibitor, treatment and induced after staurosporine (STA), a protein kinase inhibitor, application. These results agree with the previous researches that unphosphorylated HY5 interacting strongly with COP1 results in the degradation of HY5, and it also interacts with target promoters. In addition, HY5 and GIS3 expression increased significantly after nitric oxide (NO) donors treatment such as sodium nitroprusside dehydrate (SNP) and S-Nitrosoglutathione (GSNO), while in Arabidopsis nitric oxide associated 1 (Atnoa1) mutant, whose NO production was deficient, the expression of HY5 and GIS3 decreased. Besides, in nox1, an excess endogenous NO mutant, the expression of HY5 and GIS3 are both increased. Hence, NO was also involved in the regulation of the cGMP-HY5-root growth pathway. Moreover, exogenous cGMP recovered the expression of HY5 and GIS3 in Atnoa1 plant, indicating that cGMP is downstream of NO for inducing HY5 and GIS3 expression. By treating with hydrogen peroxide (H2O2) and diphenylene iodonium (DPI), an NADPH oxidase inhibitor, there was no effect on HY5 expression, but GIS3 expression was repressed. Moreover, the expression of GIS3 was still induced after ODQ treatment in HY5OE, while that was repressed after H2O2 and DPI treatment. These results indicated that NADPH oxidase mediated H2O2 production, which acted in the downstream of HY5. These results demonstrated that “NO-cGMP-HY5- GIS3-root growth” is a possible signal transduction pathway.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:53Z (GMT). No. of bitstreams: 1
ntu-108-D99b42001-1.pdf: 2748970 bytes, checksum: dc03597d08b03090a6f07b2e0c2502fc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContent
誌謝 I
中文摘要 II
Abstract IV
Content i
Introduction 1
1. Root growth in plants 1
2. cGMP is an important secondary messenger 2
3. ELONGATED HYPOCOTYL 5 (HY5) 5
4. Analysis of microarray data based on Arabidopsis roots treated with cGMP 6
5. The transgenic Arabidopsis overexpressing transcription factors 7
6. Research objectives 7
Materials and methods 8
1. Plant material and chemical treatments 8
2. Expression levels analysis 9
2-1. RNA isolation 9
2-2. RNA electrophoresis 10
2-3. RT-PCR 10
2-4. Quantitative real-time PCR 10
3. Plasmids construction 11
3-1. DNA gel electrophoresis 11
3-2. DNA gel extraction 12
3-3. DNA fragment ligation 12
3-4. E. coli transformation 13
3-5. Plasmid mini extraction 13
3-6. DNA sequencing 14
4. Arabidopsis transformation 14
4-1. Construction of transgenic plants 14
4-2. Preparation of Agrobacteria competent cells 15
4-3. Arabidopsis transformation 16
5. Statistical analysis 16
Results 18
1. Screening Arabidopsis transgenics from Dröge-Laser’s Lab in 1/2 MS medium containing ODQ 18
2. Genes downstream of the cGMP-HY5-root growth pathway 19
3. The expression of HY5 and GIS3 after treatment of cGMP and ODQ 21
4. Phenotype and genes expression in the HY5 overexpression transgenic plant created by ourselves 21
5. Phenotype of HY5OE, hy5, GIS3OE and GIS3RNAi plants under ODQ treatment 22
6. Relationship between NO and cGMP-HY5-root growth pathway 24
7. The relationship between H2O2 and cGMP-HY5-root growth pathway 25
Discussion 26
1. cGMP is essential of Arabidopsis rooting 26
2. Genes regulated by cGMP 26
3. Phytohormones may regulate cGMP-HY5-GIS3-dependent root growth 28
4. Nitric oxide participates in cGMP dependent root growth 30
5. GIS3 is repressed by both H2O2 and DPI 31
Conclusion 33
Table and figures 34
Table 1. Genes induced by both cGMP and HY5 pathway 34
Figure 1. Phenotypes of the Arabidopsis transgenics from Dröge-Laser’s Lab 35
Figure 2. Expression of genes regulated by HY5 36
Figure 3. Expression of HY5 and GIS3 in the presence of cGMP or ODQ 37
Figure 4. Genes expression of HY5 and GIS3 in HY5OE plants 38
Figure 5. Phenotypes of HY5OE and hy5 mutant plants under ODQ treatment 41
Figure 6. Phenotypes of GIS3OE and GIS3RNAi transgenic plants under ODQ treatment 43
Figure 7. Hypocotyl lengths of HY5OE, hy5 mutants, GIS3OE and GIS3RNAi plants 44
Figure 8. Effect of NO on the expression of HY5 and GIS3 46
Figure 9. Expression of GIS3 in HY5OE and nox1 transgenic plants under the presence of ODQ, DPI or H2O2 48
Figure 10. Proposed model of cGMP-HY5-GIS3-dependent root development pathway 50
Appendix 51
Table 1. Primers used in this study 51
Figure 1. Root and hypocotyl length of WT, HY5OE and hy5 plants 52
Figure 2. The expression of GIS3 in GIS3OE and HY5OE lines 53
Figure 3. Root length of WT in different concentration of SNP 54
References 55
-
dc.language.isoen-
dc.subject一氧化氮zh_TW
dc.subject過氧化氫zh_TW
dc.subjectGIS3zh_TW
dc.subjectHY5zh_TW
dc.subject根生長發育zh_TW
dc.subjectcGMPzh_TW
dc.subjectcGMPen
dc.subjectHY5en
dc.subjectGIS3en
dc.subjectnitric oxideen
dc.subjecthydrogen peroxideen
dc.subjectroot developmenten
dc.titlecGMP參與阿拉伯芥根生長發育的角色之研究zh_TW
dc.titleThe study of cGMP roles involved in root development of Arabidopsisen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃麗芬;林信宏;林振祥;林盈仲zh_TW
dc.contributor.oralexamcommitteeLi-Fen Huang;Hsin-Hung Lin;Jeng-Shane Lin;Ying-Chung Linen
dc.subject.keywordcGMP,HY5,GIS3,一氧化氮,過氧化氫,根生長發育,zh_TW
dc.subject.keywordcGMP,HY5,GIS3,nitric oxide,hydrogen peroxide,root development,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU201903234-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved