請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77251完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 馬靖孟 | zh_TW |
| dc.contributor.author | Jing-Meng Ma | en |
| dc.date.accessioned | 2021-07-10T21:52:46Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2019-08-27 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1.Bock M, Eich P, Kucera S, Kreis M, Lenhard A, Becher C, Eschner J. High
fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018). 2.Parth H. Pathak, Xiaotao Feng, Pengfei Hu, Prasant Mohapatra. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tut. 17, 2044-2077 (2015). 3.M. Leba, S. Riurean, and A. Lonica, LiFi—The path to a new way of communication. In Proc. 12th Iberian Conf. Inf. Syst. Technol. (CISTI). 1-6 (2017). 4.Latif Ullah Khan, Visible light communication: Applications, architecture, standardization and research challenges. Digit Commun. Newt. 3, 78-88 (2017). 5.Manas Ranjan Mallick, A comparative study of wireless protocols with li-fi technology: a survey. International Journal of Advanced Computational Engineering and Networking (IJACEN), 4, 123-127 (2016). 6.J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, J. W. Walewski, 513 Mbit/s visible light communications link based on DMT modulation of a white LED. J. Lightwave Technol. 28(24), 3512-3518 (2010). 7.https://www.oledcomm.net/ 8.Liane Grobe, Anagnostis Paraskevopoulos, Jonas Hilt, Dominic Schulz, Friedrich Lassak, Florian Hartlieb,Christoph Kottke, Volker Jungnickel, and Klaus-Dieter Langer, High-speed visible light communication systems. IEEE Commun. Mag. 51, 60-66 (2013). 9.T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. 50, 100-107 (2004). 10.Xiping Wu, Majid Safari, Harald Haas, Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks. IEEE T.Commun. 65, 5375-5385 (2017). 11.Yunlu Wang, Harald Haas, Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks. J. Lightw. Technol. 33, 4671-4682 (2015). 12.Suji Choi, Hyunjae Lee, Roozbeh Ghaffari, Taeghwan Hyeon, Dae‐Hyeong KimRecent, Advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203-4218 (2016). 13.Yuhao Liu, Matt Pharr, Giovanni Antonio Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 11, 9614-9635 (2017). 14.Yeo, J. C., Yap, H. K., Xi, W., Wang, Z., Yeow, Chen‐Hua, Lim, C. T., Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications. Adv. Mater. Technol. 1: 1600018, (2016). 15.Byeong Jo Kim, Dong Hoe Kim, Yoo-Yong Lee, Hee-Won Shin, Gill Sang Han, Jung Sug Hong, Khalid Mahmood, Tae Kyu Ahn, Young-Chang Joo, Kug Sun Hong, Nam-Gyu Park, Sangwook Lee, Hyun Suk Jung, a Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Roy. Soc. Ch. 8, 916-921 (2015). 16.Timothy F. O’Connor, Aliaksandr V. Zaretski, Suchol Savagatrup, Adam D. Printz, Cameron D. Wilkes, Mare Ivana Diaz, Eric J. Sawyer, Darren J. Lipomi, Wearable organic solar cells with high cyclic bending stability: Materials selection criteria. Sol. Energy Mater. Sol. Cells. 144, 438-444 (2016). 17.Tomoyuki Yokota, Peter Zalar, Martin Kaltenbrunner, Hiroaki Jinno, Naoji Matsuhisa, Hiroki Kitanosako, Yutaro Tachibana, Wakako Yukita, Mari Koizumi, Takao Someya, Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). 18.Meng Gao ab, Lihong Li and Yanlin Song, Inkjet printing wearable electronic devices. J. Mater. Chem. 5, 2971-2993, (2017). 19.Jayoung Kim, Rajan Kumar, Amay J. Bandodkar, Joseph Wang, Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 3, 160020, (2017). 20.Louis Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555-2560 (1986). 21.Margaret A. Hines, Philippe Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 100, 2, 468-471 (1996). 22.Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119,7019–7029 (1997). 23.Colvin, V. L., Schlamp, M. C., Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 370, 354–357 (1994). 24.Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei, High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering. Opt. Express. 24, 25955-25963 (2016). 25.Schenck, J. F. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging. 12, 2-19 (2000). 26.Zang, Y., Zhang, F., Huang, D., Di, C a. and Zhu, D, Sensitive flexible magnetic Sensors using organic transistors with magnetic-functionalized suspended gate electrodes. Adv. Mater. 27, 7979-7985 (2015). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77251 | - |
| dc.description.abstract | 本研究提出一種可應用於可見光通訊的新型可撓式磁控變色發光二極體,這種新型的發光二極體會根據不同外加磁場產生不同的發射光譜。當施加不同強度的外加磁場時,這個發光二極體會發射不同強度比例 540 nm以及630 nm峰值的可見光。藉此,發光二極體能夠比起單純依靠快速地閃爍在單位時間內傳遞更多訊息。整個元件的製作經由合理的設計並且選取適當的材質來符合能帶排列,將兩種不同發光頻譜的量子點混和在一起,並與電子傳輸層、電洞傳輸層形成夾層結構,最後再轉印一層靈敏度及高的金字塔微結構磁感測器。元件的每一層都能使用簡單溼式製程來完成。這個元件擁有低工作電壓、可撓可穿戴以及簡單製程等優點,在可穿戴行動光通訊中能勝任傳輸、加密、顯示等等重要的功能。 | zh_TW |
| dc.description.abstract | This study presents a new approach of flexible magnetic-field-controlled light-emitting diode (LED) towards visible light communication. This new LED will change its emission spectrum under an applied magnetic field. With different magnitude of magnetic field, this LED has different peak intensity ratio of 540 nm and 630 nm which can transmit extra message outside of the high frequency on-off flickering of LED. The LED was made by a rational design with an appropriate band alignment for all the constituent layers. They consist of a quantum dots layer with two kinds of quantum dots that can emit different wavelengths, which was sandwiched by electron and hole transport layers. Finally, a sensitive pyramid-microstructure magnetic sensor was transferred on it. All the layers can be fabricated by solution-based processes. Combining the advantages of low working voltage, flexibility and simple fabrication process, this device shows promising usage in wearable, mobile optical communication as a data emitter, encoder and displayer. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:46Z (GMT). No. of bitstreams: 1 ntu-108-R06222027-1.pdf: 1503600 bytes, checksum: d8fcf61f2d865908dcc24c48f4972ceb (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii CONTENTS iii LIST OF FIGURES v LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Theoretical Background 3 2.1 Quantum dots 3 2.2 Quantum dot light-emitting diode (QD-LED) 5 Chapter 3 Experimental details 8 3.1 Instruments 8 3.1.1 The list of equipment 8 3.1.2 Thermal evaporation 9 3.1.3 Scanning Electron Microscope (SEM) 10 3.2 Materials 11 3.2.1 The List of Materials 11 3.2.2 PEDOT:PSS 12 3.2.3 Poly-TPD 13 3.2.4 poly(9-vinylcarbazole) (PVK) 13 3.2.5 CdSe/ZnS core-shell type Quantum dots 14 3.2.6 Synthesis of ZnO nanoparticles 14 3.2.7 Silver nanowires 14 3.3 Device fabrication 15 3.3.1 Polydimethylsiloxane:FeNi/silver nanowires (PDMS:FeNi/AgNWs) 15 3.3.2 Magnetic-field-controlled color-changing QD-LED 15 Chapter 4 Results and discussion 17 4.1 Flexible magnetic sensor 17 4.2 Quantum dot light-emitting diode (QD-LED) 19 4.3 Magnetic-field-controlled color changing QD-LED 21 Chapter 5 Conclusion 25 Reference 26 | - |
| dc.language.iso | en | - |
| dc.subject | 磁電元件 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 光通訊 | zh_TW |
| dc.subject | 非接觸性 | zh_TW |
| dc.subject | 量子點發光二極體 | zh_TW |
| dc.subject | magnetoelectronic | en |
| dc.subject | touchless | en |
| dc.subject | light-based communication | en |
| dc.subject | quantum dots | en |
| dc.subject | light-emitting diode | en |
| dc.subject | quantum dot light-emitting diode | en |
| dc.title | 可撓式磁控變色量子點發光二極體 | zh_TW |
| dc.title | Flexible magnetic-field-controlled color-changing quantum dot light-emitting diode | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許芳琪;王偉華 | zh_TW |
| dc.contributor.oralexamcommittee | Fang-Chi Hsu;Wei-Hua Wang | en |
| dc.subject.keyword | 磁電元件,非接觸性,光通訊,量子點,發光二極體,量子點發光二極體, | zh_TW |
| dc.subject.keyword | magnetoelectronic,touchless,light-based communication,quantum dots,light-emitting diode,quantum dot light-emitting diode, | en |
| dc.relation.page | 29 | - |
| dc.identifier.doi | 10.6342/NTU201903366 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
