Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77247
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李芳仁
dc.contributor.authorChia-Lu Wuen
dc.contributor.author巫佳儒zh_TW
dc.date.accessioned2021-07-10T21:52:37Z-
dc.date.available2021-07-10T21:52:37Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation1. Back, S. H., M. Schroder, K. Lee, K. Zhang and R. J. Kaufman (2005). 'ER stress signaling by regulated splicing: IRE1/HAC1/XBP1.' Methods 35(4): 395-416.
2. Banfield, D. K., M. J. Lewis and H. R. Pelham (1995). 'A SNARE-like protein required for traffic through the Golgi complex.' Nature 375(6534): 806-809.
3. Behnia, R., B. Panic, J. R. Whyte and S. Munro (2004). 'Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.' Nat Cell Biol 6(5): 405-413.
4. Benedetti, H., S. Raths, F. Crausaz and H. Riezman (1994). 'The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast.' Mol Biol Cell 5(9): 1023-1037.
5. Blobel, G. and B. Dobberstein (1975). 'Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma.' J Cell Biol 67(3): 835-851.
6. Braakman, I. and D. N. Hebert (2013). 'Protein folding in the endoplasmic reticulum.' Cold Spring Harb Perspect Biol 5(5): a013201.
7. Broach, J. R., J. N. Strathern and J. B. Hicks (1979). 'Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene.' Gene 8(1): 121-133.
8. Brockwell, D. J. and S. E. Radford (2007). 'Intermediates: ubiquitous species on folding energy landscapes?' Curr Opin Struct Biol 17(1): 30-37.
9. Chen, K.-Y., P.-C. Tsai, J.-W. Hsu, H.-C. Hsu, C.-Y. Fang, L.-C. Chang, Y.-T. Tsai, C.-J. Yu and F.-J. S. Lee (2010). 'Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p.' Journal of Cell Science 123(20): 3478.
10. Chen, K. Y., P. C. Tsai, Y. W. Liu and F. J. Lee (2012). 'Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi.' J Cell Sci 125(Pt 19): 4586-4596.
11. Chen, Y.-T., I. H. Wang, Y.-H. Wang, W.-Y. Chiu, J.-H. Hu, W.-H. Chen and F.-J. S. Lee (2019). 'Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network.' Molecular Biology of the Cell 30(8): 1008-1019.
12. Conchon, S., X. Cao, C. Barlowe and H. R. Pelham (1999). 'Got1p and Sft2p: membrane proteins involved in traffic to the Golgi complex.' The EMBO journal 18(14): 3934-3946.
13. Conibear, E., J. N. Cleck and T. H. Stevens (2003). 'Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p.' Mol Biol Cell 14(4): 1610-1623.
14. Costanzo, M., A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier, H. Ding, J. L. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R. P. St Onge, B. VanderSluis, T. Makhnevych, F. J. Vizeacoumar, S. Alizadeh, S. Bahr, R. L. Brost, Y. Chen, M. Cokol, R. Deshpande, Z. Li, Z. Y. Lin, W. Liang, M. Marback, J. Paw, B. J. San Luis, E. Shuteriqi, A. H. Tong, N. van Dyk, I. M. Wallace, J. A. Whitney, M. T. Weirauch, G. Zhong, H. Zhu, W. A. Houry, M. Brudno, S. Ragibizadeh, B. Papp, C. Pal, F. P. Roth, G. Giaever, C. Nislow, O. G. Troyanskaya, H. Bussey, G. D. Bader, A. C. Gingras, Q. D. Morris, P. M. Kim, C. A. Kaiser, C. L. Myers, B. J. Andrews and C. Boone (2010). 'The genetic landscape of a cell.' Science 327(5964): 425-431.
15. Cox, J. S., C. E. Shamu and P. Walter (1993). 'Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase.' Cell 73(6): 1197-1206.
16. D'Souza-Schorey, C. and P. Chavrier (2006). 'ARF proteins: roles in membrane traffic and beyond.' Nature Reviews Molecular Cell Biology 7(5): 347-358.
17. Donaldson, J. G. and C. L. Jackson (2000). 'Regulators and effectors of the ARF GTPases.' Current Opinion in Cell Biology 12(4): 475-482.
18. Donaldson, J. G. and C. L. Jackson (2011). 'ARF family G proteins and their regulators: roles in membrane transport, development and disease.' Nat Rev Mol Cell Biol 12(6): 362-375.
19. Donaldson, J. G. and C. L. Jackson (2011). 'ARF family G proteins and their regulators: roles in membrane transport, development and disease.' Nature Reviews Molecular Cell Biology 12: 362.
20. Elfrink, H. L., R. Zwart, M. L. Cavanillas, A. J. Schindler, F. Baas and W. Scheper (2012). 'Rab6 is a modulator of the unfolded protein response: implications for Alzheimer's disease.' J Alzheimers Dis 28(4): 917-929.
21. Gerst, J. E., L. Rodgers, M. Riggs and M. Wigler (1992). 'SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes.' Proc Natl Acad Sci U S A 89(10): 4338-4342.
22. Gillingham, A. K. and S. Munro (2007). 'The Small G Proteins of the Arf Family and Their Regulators.' Annual Review of Cell and Developmental Biology 23(1): 579-611.
23. Gonzalez, T. N., C. Sidrauski, S. Dörfler and P. Walter (1999). 'Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway.' The EMBO journal 18(11): 3119-3132.
24. Graham, T. R. (2004). 'Membrane Targeting: Getting Arl to the Golgi.' Current Biology 14(12): R483-R485.
25. Hall, A. (1994). 'Small GTP-binding proteins and the regulation of the actin cytoskeleton.' Annu Rev Cell Biol 10: 31-54.
26. Hankins, H. M., Y. Y. Sere, N. S. Diab, A. K. Menon and T. R. Graham (2015). 'Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.' Molecular biology of the cell 26(25): 4674-4685.
27. Hankins, H. M., Y. Y. Sere, N. S. Diab, A. K. Menon and T. R. Graham (2015). 'Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.' Mol Biol Cell 26(25): 4674-4685.
28. Hartl, F. U. and M. Hayer-Hartl (2002). 'Molecular chaperones in the cytosol: from nascent chain to folded protein.' Science 295(5561): 1852-1858.
29. Holthuis, J. C., B. J. Nichols, S. Dhruvakumar and H. R. Pelham (1998). 'Two syntaxin homologues in the TGN/endosomal system of yeast.' Embo j 17(1): 113-126.
30. Hsu, J.-W., P.-H. Tang, I. H. Wang, C.-L. Liu, W.-H. Chen, P.-C. Tsai, K.-Y. Chen, K.-J. Chen, C.-J. Yu and F.-J. S. Lee (2016). 'Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p.' Proceedings of the National Academy of Sciences of the United States of America 113(12): E1683-E1690.
31. Kawahara, T., H. Yanagi, T. Yura and K. Mori (1997). 'Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response.' Mol Biol Cell 8(10): 1845-1862.
32. Lee, F. J., C. F. Huang, W. L. Yu, L. M. Buu, C. Y. Lin, M. C. Huang, J. Moss and M. Vaughan (1997). 'Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae.' J Biol Chem 272(49): 30998-31005.
33. Liu, Y. W., S. W. Lee and F. J. Lee (2006). 'Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane.' J Cell Sci 119(Pt 18): 3845-3855.
34. Lorente-Rodriguez, A., M. Heidtman and C. Barlowe (2009). 'Multicopy suppressor analysis of thermosensitive YIP1 alleles implicates GOT1 in transport from the ER.' J Cell Sci 122(Pt 10): 1540-1550.
35. Luo, B. and A. S. Lee (2013). 'The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies.' Oncogene 32(7): 805-818.
36. Opekarova, M., I. Robl and W. Tanner (2002). 'Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast.' Biochim Biophys Acta 1564(1): 9-13.
37. Palacios, F., J. K. Schweitzer, R. L. Boshans and C. D'Souza-Schorey (2002). 'ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly.' Nat Cell Biol 4(12): 929-936.
38. Pellon-Cardenas, O., J. Clancy, H. Uwimpuhwe and C. D'Souza-Schorey (2013). 'ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia.' Molecular and cellular biology 33(15): 2963-2975.
39. Perez-Victoria, F. J. and J. S. Bonifacino (2009). 'Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network.' Mol Cell Biol 29(19): 5251-5263.
40. Robinson, M., P. P. Poon, C. Schindler, L. E. Murray, R. Kama, G. Gabriely, R. A. Singer, A. Spang, G. C. Johnston and J. E. Gerst (2006). 'The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast.' Mol Biol Cell 17(4): 1845-1858.
41. Rohn, W. M., Y. Rouille, S. Waguri and B. Hoflack (2000). 'Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system.' Journal of Cell Science 113(12): 2093.
42. Sato, M., K. Sato and A. Nakano (2002). 'Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response.' Biochem Biophys Res Commun 296(3): 560-567.
43. Schroder, M. and R. J. Kaufman (2005). 'ER stress and the unfolded protein response.' Mutat Res 569(1-2): 29-63.
44. Shamu, C. E. and P. Walter (1996). 'Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus.' Embo j 15(12): 3028-3039.
45. Shi, Y., C. J. Stefan, S. M. Rue, D. Teis and S. D. Emr (2011). 'Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway.' Mol Biol Cell 22(21): 4093-4107.
46. Singer-Krüger, B., M. Lasić, A.-M. Bürger, A. Hausser, R. Pipkorn and Y. Wang (2008). 'Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution.' The EMBO journal 27(10): 1423-1435.
47. Smith, M. H., H. L. Ploegh and J. S. Weissman (2011). 'Road to Ruin: Targeting Proteins for Degradation in the Endoplasmic Reticulum.' Science 334(6059): 1086.
48. Spector, A. A. and M. A. Yorek (1985). 'Membrane lipid composition and cellular function.' J Lipid Res 26(9): 1015-1035.
49. Surma, M. A., C. Klose and K. Simons (2012). 'Lipid-dependent protein sorting at the trans-Golgi network.' Biochim Biophys Acta 1821(8): 1059-1067.
50. Tarassov, K., V. Messier, C. R. Landry, S. Radinovic, M. M. Serna Molina, I. Shames, Y. Malitskaya, J. Vogel, H. Bussey and S. W. Michnick (2008). 'An in vivo map of the yeast protein interactome.' Science 320(5882): 1465-1470.
51. Tsai, P.-C., J.-W. Hsu, Y.-W. Liu, K.-Y. Chen and F.-J. S. Lee (2013). 'Arl1p regulates spatial membrane organization at the <em>trans</em>-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p.' Proceedings of the National Academy of Sciences 110(8): E668.
52. Tsukada, M., E. Will and D. Gallwitz (1999). 'Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast.' Molecular Biology of the Cell 10(1): 63-75.
53. Ungermann, C. and D. Langosch (2005). 'Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing.' Journal of Cell Science 118(17): 3819.
54. Valdivia, R. H., D. Baggott, J. S. Chuang and R. W. Schekman (2002). 'The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins.' Dev Cell 2(3): 283-294.
55. Wang, I. H., Y. J. Chen, J. W. Hsu and F. J. Lee (2017). 'The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking.' Traffic 18(9): 580-589.
56. Wennerberg, K., K. L. Rossman and C. J. Der (2005). 'The Ras superfamily at a glance.' Journal of Cell Science 118(5): 843.
57. Wiederkehr, A., S. Avaro, C. Prescianotto-Baschong, R. Haguenauer-Tsapis and H. Riezman (2000). 'The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae.' J Cell Biol 149(2): 397-410.
58. Yu, C.-J. and F.-J. S. Lee (2017). 'Multiple activities of Arl1 GTPase in the trans-Golgi network.' Journal of Cell Science 130(10): 1691.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77247-
dc.description.abstract從酵母菌乃至哺乳類動物,腺嘌呤核苷二磷酸核糖化相似因子 (Arf-like protein,Arl) 在細胞體內扮演著調控囊泡運輸的功能。而在釀酒酵母中,第一腺嘌 呤核苷二磷酸核糖化相似因子 (Arl1) 負責上招募高爾基體蛋白 Imh1 至反式高爾 基氏體網路 (trans-Golgi network)已為人所知;然而,其下游的運輸貨物以及功能 在先前的報導中並未獲得詳盡的研究。在我們先前的研究中發現,當細胞遭遇未折 疊蛋白反應時,細胞會促進 Arl1 以及其下游 Imh1 的活化,但是當時我們並未探 究其中作用的機轉以及 Arl1 和 Imh1 被活化的目的。在本篇研究中,我們發現當 細胞遭遇未折疊蛋白反應時,被活化的 Arl1 以及 Imh1 會 Sft2 一起調控細胞中的 囊泡運輸。另外,我們發現這樣的機制與 GARP 所主導的反向運輸無關。反之, 我們的研究指出,Imh1 和 Sft2 會一起調控 v-SNARE 蛋白 Snc1 的正向運輸。當細 胞裡缺乏 Imh1 或是 Sft2 時,Snc1 會卡在反式高爾基氏體網路而無法送達至細胞 膜。總結本篇,我們的研究意謂著細胞囊泡運輸系統在內質網壓力下的重要性。更 多的是,我們找到了當細胞遭遇未折疊蛋白反應時,Imh1 以及 Sft2 在囊泡運輸的功能。zh_TW
dc.description.abstractADP-ribosylation factors-like protein 1 (Arl1) is an important regulator of intracellular vesicular trafficking in organisms ranging from yeast to mammals. In Saccharomyces cerevisiae, Arl1 recruits its effector Imh1 to the trans-Golgi network (TGN). However, the downstream cargo or function of Arl1-Imh1 is still unclear. According to previous studies, Unfolded-Protein Response (UPR) promotes the activation of Arl1 and thus recruits Imh1 to the Golgi, but its downstream effect upon UPR remains to be elucidated. In this study, we validate that activated Imh1 recruits Sft2 to the TGN, which is involved in vesicular transport when cells confront UPR. Moreover, we found out that this regulation is independent of GARP complex recruitment, a complex important to retrograde trafficking. In contrast, Imh1 and Sft2 mediate the anterograde of v-SNARE protein Snc1 that is stuck in TGN in the absence of Imh1 or Sft2 upon UPR. Together, our study demonstrates the specific function of golgin Imh1 and Sft2 in trafficking machinery when cells encounter UPR.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:37Z (GMT). No. of bitstreams: 1
ntu-108-R06448003-1.pdf: 1796312 bytes, checksum: 9314412ca901275fb723a23da8b0673a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 .............................................................................................................. 2
中文摘要 ...................................................................................................... 6
Abstract ....................................................................................................... 7
Introduction................................................................................................. 8
ADP-ribosylation Factors .......................................................................... 8
Material and Methods .............................................................................. 18
Tables ......................................................................................................... 28
Table 1. Yeast strains used in this study ................................................................. 28 Table 2. Plasmids used in this study ....................................................................... 30 Table 3. Antibodies used in this study .................................................................... 32
Results........................................................................................................ 33
Part I: Functional Characterization of Sft2 upon UPR in Saccharomyces cerevisiae. ................................................................................................................................ 33 The enhanced-recruitment of Imh1 is required for Sft2 localization upon UPR. ........................................................................................................................ 33
Sft2 acts downstream of Imh1 to regulate SNARE proteins trafficking upon UPR. ............................................................................................................... 34 Imh1-Sft2 regulate the anterograde transport of Snc1 upon UPR.................. 35 The anterograde pathway upon UPR is independent of GARP complex. ...... 37 The N-terminus of Sft2 might be important to regulating v-SNARE transport upon UPR. ...................................................................................................... 38 Got1 is also involved in v-SNARE anterograde transport upon UPR............ 39 Got1 might participate in the pathway indirectly upon UPR. ........................ 40
Part II: Identification of an arginine permease Can1 as a putative cargo of Arl1 small GTPase. ......................................................................................................... 41
Arl3-Arl1 cascade may be involved in Can1 transport through Syt1 independent pathway. ..................................................................................... 41 Arl1 might regulate Can1 through its anterograde transport. ......................... 43
Other Arl1-related proteins also mediate Can1 transport. .............................. 44 Drs2 might regulate Can1 together with Arl1. ............................................... 45
Discussion .................................................................................................. 47
Part I: Functional Characterization of Sft2 upon UPR in Saccharomyces cerevisiae ................................................................................................................................ 47 The role of Sft2 in mediating anterograde trafficking upon UPR. ................. 47
The differential role of Imh1 and Sft2 in suppression of ypt6∆ cells and upon UPR. ............................................................................................................... 48 The involvement of Got1 in vesicular trafficking mediated by Imh1-Sft2 upon UPR. ............................................................................................................... 49
Part II: Identification of an arginine permease Can1 as a putative cargo of Arl1 small GTPase .......................................................................................................... 50 Cargos that is also regulated by Arl1-Arl3. .................................................... 51
Figures ....................................................................................................... 52
Figure 1. UPR facilitates the elevated-recruitment of Imh1 which is colocalized with GFP-Sft2.............................................................................. 52 Figure 2. Imh1 is required for the maintenance of GFP-Sft2 localization upon UPR. ............................................................................................................... 53 Figure 3. Sft2 acts downstream of Imh1 upon UPR....................................... 54 Figure 4. Sft2 is required for proper trafficking of Snc1 and Tlg1 upon UPR.
........................................................................................................................ 55 Figure 5. Imh1 and Sft2 regulate Snc1 in anterograde trafficking upon UPR.
........................................................................................................................ 57 Figure 6. Snc1 shows different mislocalized pattern in various recycling mutant strains.................................................................................................. 59 Figure 7. Localization of GARP complex is not affected by Sft2 or Imh1 upon UPR. ............................................................................................................... 60 Figure 8. Imh1 interact with Sft2 in vitro. ...................................................... 61 Figure 9. Imh1 interact with Sft2 in vitro. ...................................................... 63 Figure 10. N-terminus of Sft2 might be indispensable for its function upon UPR. ............................................................................................................... 66 Figure 11. Got1 is also required for Snc1 but not Tlg1 trafficking upon UPR.
........................................................................................................................ 67
dc.language.isoen
dc.subject高爾基氏體zh_TW
dc.subject第一腺嘌呤核?二磷酸核糖化相似因子zh_TW
dc.subject高爾機體蛋白zh_TW
dc.subject未折疊蛋白反應zh_TW
dc.subject正向運輸zh_TW
dc.subjectUPRen
dc.subjectArl1en
dc.subjectImh1en
dc.subjectSft2en
dc.subjectanterograde traffickingen
dc.title第一腺嘌呤核苷二磷酸核醣化因子相似蛋白於酵母菌
之功能性探討
zh_TW
dc.titleFunctional Characterization of ADP-Ribosylation Factor- Like Protein 1 in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,陳瑞華,林敬哲,王昭雯
dc.subject.keyword高爾基氏體,第一腺嘌呤核?二磷酸核糖化相似因子,高爾機體蛋白,未折疊蛋白反應,正向運輸,zh_TW
dc.subject.keywordArl1,Imh1,Sft2,UPR,anterograde trafficking,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201903594
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-108-R06448003-1.pdf
  Restricted Access
1.75 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved