請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳宗霖 | zh_TW |
dc.contributor.author | 黃揚智 | zh_TW |
dc.contributor.author | Yang-Chih Huang | en |
dc.date.accessioned | 2021-07-10T21:52:32Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2019-08-19 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital System Design, Hoboken, NJ: Wiley, 2009.
[2] F. Jun, Y. Xiaoning, J. Kim, B. Archambeault, and A. Orlandi, “Signal integrity design for high-speed digital circuits: Progress and directions,” IEEE Trans. Electromagn. Compat., vol. 52, no. 2, pp. 392–400, May 2010. [3] T.-L. Wu, F. Buesink, and F. Canavero, “Overview of signal integrity and EMC design technologies on PCB: fundamentals and latest progress,” IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp. 624–638, Aug. 2013. [4] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed., New York: Wiely, 2006. [5] Y. Kayano, Y. Tsuda, and H. Inoue, “Identifying EM radiation from asymmetrical differential-paired lines with equi-distance routing,” in Proc. IEEE Int. Symp. Electromagn. Compat., Pittsburgh, PA, Aug. 2012, pp. 311–316. [6] L. O. Hoefi, J. L. Knighten, J. T. DiBene II, and M. W. Fogg, “Spectral analysis of common mode currents on fibre channel cable shields due to skew imbalance of differential signals operating at 1.0625 Gb/s,” in Proc. IEEE Int. Symp. Electromagn. Compat., Denver, CO, Aug. 1998, pp. 527–531. [7] J. L. Knighten, N. W. Smith, J. T. DiBene II, and L. O. Hoeft, “EMI common-mode current dependence on delay skew imbalance in high speed differential transmission lines operating at 1 gigabit/second data rates,” in Proc. IEEE Int. Symp. Quality Electron. Design, San Jose, CA, Mar. 2000, pp. 309–313. [8] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, C.-W. Lam, and L. Rubin, “Quantifying EMI resulting from finite-impedance reference planes,” IEEE Trans. Electromagn. Compat., vol. 39, no. 4, pp. 286–297, Nov. 1997. [9] P. Fornberg, M. Kanda, C. Lasek, M. Piket-May, and S. H. Stephen, “The impact of a nonideal return path on differential signal integrity,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 11–15, Feb. 2002. [10] B. Archambeault, S. Connor, and J. Diepenbrock, “EMI emissions from mismatch in high-speed differential signal trace and cables,” in Proc. IEEE Int. Electromagn. Compat. Symp., Honolulu, HI, Jul. 2007, pp. 1–6. [11] T. Matsushima, O. Wada, T. Watanabe, Y. Toyota, L. R. Koga, and “Verification of common-mode-current prediction method based on imbalance difference model for single-channel differential signaling system,” in Proc. Asia-Pacific Symp. Electromagn. Compat., Singapore, Singapore, May 2012, pp. 21-24. [12] K. Sejima, Y. Toyata, K. Iokibe, L. R. Koga, T. Watanabe, “Experimental model validation of mode-conversion sources introduced to modal equivalent circuit,” in Proc. IEEE Int. Electromagn. Compat. Symp., Pittsburgh, PA, Aug. 2012, pp. 492–497. [13] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, and M. Wilhelm, “Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables,” IEEE Trans. Electromagn. Compat., vol. 38, no. 4, pp. 557–566, Nov. 1996. [14] D. M. Hockanson, X. Ye, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, and R. E. DuBroff, “FDTD and experimental investigation of EMI from stacked-card PCB configurations,” IEEE Trans. Electromagn. Compat., vol. 43, no. 1, pp. 1–10, Feb. 2001. [15] Y. Kayano, M. Tanaka and H. Inoue, “An equivalent circuit model for predicting EM radiation from a PCB driven by a connected feed cable,” in Proc. IEEE Int. Symp. Electromagn. Compat., Portland, OR, Aug. 2006, pp.166–171. [16] M. Leone, and V. Navratil, “On the electromagnetic radiation of printed-circuit-board interconnections,” IEEE Trans. Electromagn. Compat., vol. 47, no. 2, pp. 219–226, May 2005. [17] X. Duan, B. Archambeault, H.-D. Bruens, and C. Schuster, “EM emission of differential signals across connected printed circuit boards in the GHz range,” in Proc. IEEE Int. Electromagn. Compat. Symp., Austin, TX, Aug. 2009, pp. 50–55. [18] C. Su, and T. H. Hubing, “Calculating radiated emissions due to I/O line coupling on printed circuit boards using the imbalance difference method,” IEEE Trans. Electromagn. Compat., vol. 54, no. 1, pp. 212–217, Feb. 2012. [19] G.-H. Shiue, W.-D. Guo, C.-M. Lin, and R.-B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 560–569, Aug. 2006. [20] T. Matsushima, and O. Wada, “A method of common-mode reduction based on imbalance difference model for differential transmission line bend,” in Proc. IEEE Int. Symp. Eur. Electromagn. Compat., Brugge, Belgium, Sep. 2013, pp. 338–341. [21] C.-H. Chang, R.-Y. Fang, and C.-L. Wang, “Bended differential transmission line using compensation inductance for common-mode noise suppression,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 9, pp. 1518–1525, Sep. 2012. [22] C. Gazda, D. Vande Ginste, H. Rogier, R.-B. Wu, and D. De Zutter, “A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips,” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 969–978, Nov. 2010. [23] G.-H. Shiue, Y.-H. Kao, C.-M. Hsu, Y.-C. Tsai, and D. V. Ginste, “Common-mode noise reduction schemes for weakly coupled differential serpentine delay microstrip lines,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 6, pp. 1016–1027, Jun. 2013. [24] R. Lai, Y. Maillet, F. Wang, S. Wang, R. Burgos, and D. Boroyevich, “An integrated EMI chokes for differential-mode and common-mode noise suppression,” IEEE Trans. Power Electron. Lett., vol. 25, no. 3, pp. 539–544, Mar. 2010. [25] N. Oka, K. Misu, S. Yoneda, S. Saito, and S. Nitta, “A common mode noise filter for high speed and wide band differential mode signal transmission,” in Proc. IEEE Int. Symp. Eur. Electromagn. Compat., York, UK, Sep. 2011, pp. 732–736. [26] K. Yanagisawa, F. Zhang, T. Sato, K. Yanagisawa, and Y. Miura, “A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3571–3573, Oct. 2005. [27] B.-C. Tseng, and L.-K. Wu, “Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic,” IEEE Trans. Electromagn. Compat., vol. 46, no. 4, pp. 571–579, Jun. 2004. [28] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008. [29] J. Naqui, A. Fernández-Prieto, M. Durán-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martín, “Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3023–3034, Oct. 2012. [30] S.-J. Wu, C.-H, Tsai, T.-L. Wu, and T. Itoh “A novel wideband common-mode suppression filter for GHz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Techn., vol. 57, no.4, pp. 848–855, Apr. 2009. [31] J.-H. Choi, P. W. C. Hon, and T. Itoh, “Dispersion analysis and design of planar electromagnetic bandgap ground plane for broadband common-mode suppression,” IEEE Microw. Compon. Lett., vol. 24, no. 11, pp. 772–774, Nov. 2014. [32] T.-W. Weng, C.-H. Tsai, C.-H. Chen, D.-H. Han, and T.-L. Wu, “Synthesis Model and Design of a Common-Mode Bandstop Filter (CM-BSF) With an All-Pass Characteristic for High-Speed Differential Signals,” IEEE Trans. Microw. Theory Techn., vol.62, no.8, pp. 1647-1656, Aug. 2014. [33] F. de Paulis, L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, “Design of a common mode filter by using planar electromagnetic bandgap structures,” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 994–1002, Nov. 2010. [34] F. de Paulis, L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, “Compact configuration for common mode filter design based on planar electromagnetic bandgap structures,” IEEE Trans. Electromagn. Compat., vol. 54, no. 3, pp. 646–654, Jun. 2012. [35] C.-H. Tsai, and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative permittivity metamaterials,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 195–202, Jan. 2010. [36] I.-I. Ao Ieong, C.-H. Tsai, and T.-L. Wu, “An ultra-compact common-mode filter for RF interference control in 3G wireless communication systems,” in Proc. IEEE Int. Symp. Electromagn. Compat., Lauderdale, FL, Jul. 2010, pp. 776–779. [37] C.-Y. Hsiao, C.-H. Tsai, C.-N. Chiu, T.-L. Wu, “Radiation Suppression for Cable-Attached Packages Utilizing a Compact Embedded Common-Mode Filter,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 10, pp. 1696-1703, Oct. 2012. [38] D. M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., 2005. [39] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001. [40] A. Williams, and F. Taylor. “Networks for the time domain” in Electronic filter design handbook, 4th ed., New York: McGraw-Hill, 2006, pp. 279-297. [41] A. Fernández-Prieto, J. Martel, J. S. Hong, F. Medina, S. Qian and F. Mesa, "Differential transmission line for common-mode suppression using double side MIC technology," 2011 41st European Microw. Conference, Manchester, 2011, pp. 631-634 [42] B.-F. Su, and T.-G. Ma, “Miniaturized common-mode filter using coupled synthesized lines and mushroom resonators for high-speed differential signals,” IEEE Microw. Compon. Lett., vol. 25, no. 2, pp. 112–114, Feb. 2015. [43] Q. Liu, G. Li., V. Khilkevich, and D. Pommerenke, “Common-mode filters with interdigital fingers for harmonics suppression and lossy materials for broadband suppression,” IEEE Trans. Electromagn. Compat., vol. 57, no. 6, pp. 1740–1743, Dec. 2015. [44] M.A. Varner, F. de Paulis, A. Orlandi, S. Connor, M. Cracraft, B. Archambeault, H. Nisanci, and D. di Febo, “Removable EBG-based common mode filter for high speed signaling: Design and experimental validation,” IEEE Trans. Electromagn. Compat., vol. 57, no. 4, pp. 672–679, Aug. 2015. [45] Q. Liu et al., “Reduction of EMI due to common-mode currents using a surface-mount EBG-based filter,” IEEE Trans. Electromagn. Compat., vol. 58, no. 5, pp. 1440–1447, Oct. 2016. [46] T.-S. Horng, J.-M. Wu, L.-Q. Yang, and S.-T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1015–1018. [47] C.-Y. Hsiao, Y.-C. Huang, and T.-L. Wu, “An ultra-compact common-mode bandstop filter with modified-T circuits in integrated passive device (IPD) process,” IEEE Trans. Microw. Theory Techn., vol.63, no.11, pp. 3624-3631, Nov. 2015. [48] M. A. Morgan and T. A. Boyd, “Theoretical and experimental studyof a new class of reflectionless filter,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1214–1221, May 2011 [49] C.-Y. Hsiao, C.-H. Cheng, and T.-L. Wu, “A new broadband common-mode noise absorption circuit for high-speed differential digital systems,” IEEE Trans. Microw. Theory Techn., vol.63, no.6, pp. 1894-1901, Jun. 2015. [50] P.-J. Li, Y.-C. Tseng, C.-H. Cheng, and T.-L. Wu. “A novel absorptive common-mode filter for cable radiation reduction,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 4, pp. 511-518, Apr. 2017. [51] C. Cheng and T. Wu, "Analysis and Design Method of a Novel Absorptive Common-Mode Filter," in IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1826-1835, May 2019. [52] P. Li and T. Wu, "Synthesized Method of Dual-Band Common-Mode Noise Absorption Circuits," in IEEE Trans. Microw. Theory Techn., vol. 67, no. 4, pp. 1392-1401, April 2019. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77245 | - |
dc.description.abstract | 若高速差動傳輸系統中的共模雜訊流經轉接介面等不連續處時,將會有輻射能量以干擾的形式而產生,並衍生電磁干擾及射頻干擾等嚴重問題。實務上常使用共模遏流線圈或共模濾波器將共模雜訊濾除。共模遏流線圈雖然具有體積小以及價格低的優勢,但其在高頻卻受到導磁係數下降的限制,導致整體效能下降。另一方面,大多數之共模濾波器通因此其體積難以縮小,也因此應用範圍嚴重受到限制。在本論文中,提出多種基於全通濾波器之共模濾波器,此類濾波器可同時具有共模遏流線圈與傳統共模濾波器之優勢。首先,此類共模濾波器的差模響應可以被合成,且理論上可以達到無限好的響應,因此可以符合各種訊號完整度的要求。其次,本篇論文中共提出三種不同共模響應的共模濾波器,包含帶止共模濾波器、低通共模濾波器與無反射式共模濾波器,因此,此類共模濾波器可根據需求適用於不同的場合,擴大此類共模濾波器的應用範圍。此外,本篇論文中針對各種響應之共模濾波器都有完整的合成程序,因此可讓設計者能預先決定規格,並迅速得到完整電路,大幅減少設計時間。另一方面,由於此類共模濾波器皆使用集總元件,因此很容易實現於不同的製程之中,例如印刷電路板、低溫共燒陶磁以及薄膜製程。相較於傳統共模濾波器,此類濾波器容易針對不同應用情境進行最佳化,例如減少製作成本或者達成縮小化設計。最後,在每一章節中,各種架構之共模濾波器都經實際製作與量測,其結果顯示此類架構之共模濾波器最終響應皆與理想電路相近,因此可驗證此類架構之共模濾波器在非理想效應(包含元件寄生效應以及元件損耗)存在下,仍具有實務上的可行性。 | zh_TW |
dc.description.abstract | In differential signal transmission systems, common mode (CM) noise is one of the most serious sources that cause the radio frequency interference/electromagnetic interference (RFI/EMI) problems, which may degrade the throughput of the wireless circuits or cause interferences to other electronic devices. Conventionally, common mode chokes (CMCs) and common mode filters (CMFs) are used to eliminate the CM noise. Though CMCs have the advantages of compact size and low cost, they suffer from degradation of performance due to low permeability at high frequency. On the other hand, most of the previous CMFs suffer from large size, and therefore the applications are strictly limited. In this dissertation, proposed CMFs based on all pass filters can achieve both advantages of CMCs and CMFs. First, the differential mode (DM) responses can be synthesized as pre-specified functions to meet arbitrary signal integrity (SI) specification. Second, three different CM suppression responses, such as bandstop, low pass, and reflectionless can be achieved to meet requirements in various applications. In addition, complete synthetization flows of all the proposed CMFs are stated. Therefore, it can shorten the time for the engineers to validate the performance of CMFs in real applications. On the other hand, the proposed CMFs can be easily implemented in various process, such as PCB, LTCC, and thin film process. Compared to those CMFs based on physical resonance structures, the proposed CMFs can easily meet different requirements such as cost reduction or miniaturization. At last, in each chapter, the proposed CMFs are implemented and measured, and the measured results show good agreement to ideal circuit models, even if the losses and parasitic effects are included. Therefore, the feasibility of the proposed CMFs are also validated in practice. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:32Z (GMT). No. of bitstreams: 1 ntu-108-D01942007-1.pdf: 10259693 bytes, checksum: 35df7c19c3f4c17a0eeacf211fff0797 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 國立台灣大學博士學位論文口試委員會審定書 ii
誌謝 iii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xix Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Survey 5 1.3 Contributions 8 Chapter 2 Circuit Theory and Discussion 10 2.1 Background Knowledge of Microwave Filters with Lumped Elements 10 2.1.1 The Pole-Zero Concept 10 2.1.2 Dispersive Delay of Microwave Filters 11 2.1.3 Some Useful Responses and Their Delay Properties 12 2.1.3.1 Butterworth Response 13 2.1.3.2 Chebyshev Response 14 2.1.3.3 Bessel Maximum Flat Delay Response 16 2.1.3.4 Linear Phase with Equi-ripple Delay 17 2.1.4 Frequency Scaling of the Group Delay Response 19 2.2 Background Knowledge of All Pass Filters 20 2.2.1 Balanced All Pass Filters 21 2.2.2 Single Ended All Pass Filters 24 2.3 Synthesis of Equal Delay Lines Based on All Pass Filters 28 2.4 Signal Integrity of Equal Delay Line on Digital Signals 34 2.4.1 Eye Diagram of Digital Signals 34 2.4.2 Spectrum of Trapezoidal Pulse 38 2.4.3 Group Delay Response and Signal Integrity of Digital Signals 40 Chapter 3 Bandstop Common Mode Filter (BS-CMF) Designs 53 3.1 Generalized Schematic of Reflective Common Mode Filter Design Based on All Pass Filters 54 3.2 Design of the Proposed CMF 55 3.2.1 Circuit Synthesis of CMF with One Cell 56 3.2.2 Circuit Synthesis of CMF with Multiple Cells 59 3.2.3 Comparison between Proposed Method and Previous Work 65 3.3 Implementation and Measurement 68 3.3.1 Design and Fabrication 68 3.3.2 Implementation of the CMF Circuit and Result 69 3.4 Summary 74 Chapter 4 Low Pass Reflective with Group Delay Compensated Common Mode Filter (GDC-CMF) Design 77 4.1 Synthesize method of simplest LP-CMF 77 4.1.1 Discussion of CM response 78 4.1.2 Discussion of DM response 80 4.1.3 Design procedure of the LP-CMF 82 4.1.4 Implementation and Validation of LP-CMF 83 4.2 Design and validation of GDC-CMF 88 4.2.1 Introduction of GDC-CMF 88 4.2.2 Synthetization Flow of GDC-CMF 91 4.2.3 Design Example 95 4.2.4 Implementation of the GDC-CMF and validation 96 4.3 Summary 99 Chapter 5 Absorptive Common Mode Filter (ACMF) Design Based on All Pass Filters 101 5.1 Theory and Proposed Absorptive CMF (A-CMF) 104 5.1.1 Circuits of the Proposed ACMF 104 5.1.2 Circuits of CM matching stage 108 5.1.3 General schematic of proposed ACMF 112 5.1.4 Complete Design Flow of the ACMF with Specified Specifications 118 5.2 Implementation examples of proposed ACMF 122 5.3 Summary 133 Chapter 6 Bi-directional Absorptive Common Mode Filter (bi-ACMF) Design 135 6.1 Proposed Bi-directional Absorptive Common Mode Filter (Bi-ACMF) 136 6.1.1 Bi-ACMF Schematic 136 6.1.2 Proposed CM Feedback Network 138 6.2 Wye-Delta Transformation 139 6.2.1 Generalized Wye-Delta Transformation 139 6.2.2 Wye-Delta Transformation of Loops with Both Inductors and Capacitors 140 6.3 Circuit of Bi-ACMF Based on All Pass Filters 142 6.3.1 Circuit Transformation for LC Loop with Parallel LC Resonator 143 6.3.2 Different DM Passing Networks and Corresponding CM Feedback Network Part 145 6.3.2.1 1st Order All Pass Filter as DM Passing Network 146 6.3.2.2 2nd Order All Pass Filter as DM Passing Network 148 6.3.3 Example of Proposed Bi-ACMF 152 6.3.4 Generalized Bi-ACMF Based on All Pass Filters 155 6.3.5 Comparison between Bi-ACMF and ACMF in Chapter 5 158 6.4 Implementation and Validation of Proposed Bi-ACMF 160 6.5 Summary 165 Chapter 7 Conclusion 167 7.1 Conclusions of this Dissertation 167 7.2 Suggestions for Future Works 169 REFERENCE 171 PUBLICATION LIST 178 | - |
dc.language.iso | en | - |
dc.title | 基於全通濾波器之共模濾波器設計 | zh_TW |
dc.title | Common Mode Filters Design Based on All Pass Filters | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 吳瑞北;鄭士康;莊晴光;江衍偉;曹恆偉;洪子聖;馬自莊;唐震寰 | zh_TW |
dc.contributor.oralexamcommittee | ;;;;;;; | en |
dc.subject.keyword | 差動訊號,電磁干擾,射頻干擾,集總被動元件,共模濾波器,無反射電路,全通濾波器,等延遲線,群延遲,眼圖, | zh_TW |
dc.subject.keyword | differential signaling,electromagnetic interference (EMI),radiation,radio-frequency interference (RFI),integrated passive devices (IPDs),common mode filter (CMF),reflectionless circuit,all pass filter,equal delay line,group delay,eye diagram, | en |
dc.relation.page | 179 | - |
dc.identifier.doi | 10.6342/NTU201902453 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-14 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 10.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。