Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳音zh_TW
dc.contributor.advisorChia?Yin Leeen
dc.contributor.author黃儒音zh_TW
dc.contributor.authorRu-Yin Huangen
dc.date.accessioned2021-07-10T21:52:29Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAmes, G.F. (1968). Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95, 833-843.
Arondel, V., Benning, C., and Somerville, C.R. (1993). Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem 268, 16002-16008.
Barne, K.A., Bown, J.A., Busby, S.J., and Minchin, S.D. (1997). Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters. EMBO J 16, 4034-4040.
Bartoli, J., My, L., Belmudes, L., Coute, Y., Viala, J.P., and Bouveret, E. (2017). The long hunt for pssR-looking for a phospholipid synthesis transcriptional regulator, finding the ribosome. J Bacteriol 199.
Belval, L., Marquette, A., Mestre, P., Piron, M.C., Demangeat, G., Merdinoglu, D., and Chich, J.F. (2015). A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express. Protein Expr Purif 109, 29-34.
Bogdanov, M., and Dowhan, W. (1995). Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem 270, 732-739.
Bogdanov, M., Sun, J., Kaback, H.R., and Dowhan, W. (1996). A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271, 11615-11618.
Boratyn, G.M., Schaffer, A.A., Agarwala, R., Altschul, S.F., Lipman, D.J., and Madden, T.L. (2012). Domain enhanced lookup time accelerated BLAST. Biol Direct 7, 12.
Broberg, C.A., Calder, T.J., and Orth, K. (2011). Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13, 992-1001.
Broberg, C.A., Zhang, L., Gonzalez, H., Laskowski-Arce, M.A., and Orth, K. (2010). A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity. Science 329, 1660-1662.
Bukata, L., Altabe, S., de Mendoza, D., Ugalde, R.A., and Comerci, D.J. (2008). Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J Bacteriol 190, 8197-8203.
Bullock, W.O., Fernandez, J.M., and Short, J.M. (1987). XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5, 376-378.
Burdette, D.L., Seemann, J., and Orth, K. (2009). Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73, 639-649.
Cao, M., and Helmann, J.D. (2004). The Bacillus subtilis extracytoplasmic-function sigmaX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186, 1136-1146.
Ceccarelli, D., Hasan, N.A., Huq, A., and Colwell, R.R. (2013). Distribution and dynamics of epidemic and pandemic virulence factors. Front Cell Infect Microbiol 3, 97.
Chen, Y.L., Montedonico, A.E., Kauffman, S., Dunlap, J.R., Menn, F.M., and Reynolds, T.B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75, 1112-1132.
Clemmer, K.M., and Rather, P.N. (2007). Regulation of flhDC expression in Proteus mirabilis. Res Microbiol 158, 295-302.
Cornelis, G.R. (2010). The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol Chem 391, 745-751.
Criminger, J.D., Hazen, T.H., Sobecky, P.A., and Lovell, C.R. (2007). Nitrogen fixation by Vibrio parahaemolyticus and its implications for a new ecological niche. Appl Environmental Microbiol 73, 5959-5961.
de Avila, E.S.S., Echeverrigaray, S., and Gerhardt, G.J. (2011). BacPP: bacterial promoter prediction--a tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol 287, 92-99.
de Rudder, K.E., Sohlenkamp, C., and Geiger, O. (1999). Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274, 20011-20016.
DeChavigny, A., Heacock, P.N., and Dowhan, W. (1991). Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266, 10710.
Delhaize, E., Hebb, D.M., Richards, K.D., Lin, J.M., Ryan, P.R., and Gardner, R.C. (1999). Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. J Biol Chem 274, 7082-7088.
Dowhan, W. (1992). Phosphatidylserine synthase from Escherichia coli. Methods Enzymol 209, 287-298.
Dowhan, W. (2013). A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831, 471-494.
Drake, S.L., DePaola, A., and Jaykus, L.-A. (2007). An Overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 6, 120-144.
Dutt, A., and Dowhan, W. (1977). Intracellular distribution of enzymes of phospholipid metabolism in several gram-negative bacteria. J Bacteriol 132, 159-165.
Easom, C.A., and Clarke, D.J. (2012). HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Environ Microbiol 14, 953-966.
Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.
Fujino, T., Okuno, Y., Nakada, D., Aoyama, A., Fukai, K., Mukai, T., and Ueho, T. (1953). On the bacteriological examination of shirasu-food poisoning. Med. J. Osaka Univ 4, 299-304.
Ge, Z., and Taylor, D.E. (1997). The Helicobacter pylori gene encoding phosphatidylserine synthase: sequence, expression, and insertional mutagenesis. J Bacteriol 179, 4970-4976.
Gill, B.D., Indyk, H.E., Kumar, M.C., Sievwright, N.K., Manley-Harris, M., and Dowell, D. (2012). Analysis of 5'-mononucleotides in infant formula and adult/pediatric nutritional formula by liquid chromatography: First Action 2011.20. J AOAC Int 95, 599-602.
Gonzales, M.F., Brooks, T., Pukatzki, S.U., and Provenzano, D. (2013). Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae. J Vis Exp. (80), e50684.
Gottlin, E.B., Rudolph, A.E., Zhao, Y., Matthews, H.R., and Dixon, J.E. (1998). Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc Natl Acad Sci 95, 9202-9207.
Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. (1988). A large family of bacterial activator proteins. Proc Natl Acad Sci 85, 6602-6606.
Honda, T., Ni, Y., and Miwatani, T. (1989). Purification of a TDH-related hemolysin produced by a Kanagawa phenomenon-negative clinical isolate of Vibrio parahaemolyticus 06: K46. FEMS Microbiol Lett 48, 241-245.
Honda, T., Ni, Y.X., and Miwatani, T. (1988). Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 56, 961-965.
Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., and Pease, L.R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68.
Jakomin, M., Chessa, D., Baumler, A.J., and Casadesus, J. (2008). Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol 190, 7406-7413.
Jensen, R.V., Depasquale, S.M., Harbolick, E.A., Hong, T., Kernell, A.L., Kruchko, D.H., Modise, T., Smith, C.E., McCarter, L.L., and Stevens, A.M. (2013). Complete Genome Sequence of Prepandemic Vibrio parahaemolyticus BB22OP. Genome announcements 1. e00002-12.
Johnson, C.N. (2013). Fitness factors in vibrios: a mini-review. Microbial Ecology 65, 826-851.
Johnson, C.N., Bowers, J.C., Griffitt, K.J., Molina, V., Clostio, R.W., Pei, S., Laws, E., Paranjpye, R.N., Strom, M.S., Chen, A., et al. (2012). Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 78, 7249-7257.
Johnson, C.N., Flowers, A.R., Noriea, N.F., 3rd, Zimmerman, A.M., Bowers, J.C., DePaola, A., and Grimes, D.J. (2010). Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Appl Environ Microbiol 76, 7076-7084.
Joseph, R.E., and Andreotti, A.H. (2008). Bacterial expression and purification of interleukin-2 tyrosine kinase: single step separation of the chaperonin impurity. Protein Expr Purif 60, 194-197.
Kanfer, J., and Kennedy, E.P. (1964). Metabolism and Function of Bacterial Lipids. II. Biosynthesis of Phospholipids in Escherichia coli. J Biol Chem 239, 1720-1726.
Karnezis, T., Fisher, H.C., Neumann, G.M., Stone, B.A., and Stanisich, V.A. (2002). Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan). J Bacteriol 184, 4114-4123.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., et al. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47, D1102-D1109.
Kishishita, M., Matsuoka, N., Kumagai, K., Yamasaki, S., Takeda, Y., and Nishibuchi, M. (1992). Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. Appl Environ Microbiol 58, 2449-2457.
Ko, M., and Park, C. (2000). H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. J Bacteriol 182, 4670-4672.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.
Kuge, O., Saito, K., and Nishijima, M. (1997). Cloning of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylserine synthase (PSS) II, overexpression of which suppresses the phosphatidylserine biosynthetic defect of a PSS I-lacking mutant of CHO-K1 cells. J Biol Chem 272, 19133-19139.
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874.
Kusters, R., Dowhan, W., and de Kruijff, B. (1991). Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266, 8659-8662.
Larson, T.J., and Dowhan, W. (1976). Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5'-diphospho-1,2-diacyl-sn-glycerol. Biochemistry 15, 5212-5218.
Lee, C.Y., Cheng, M.F., Yu, M.S., and Pan, M.J. (2002). Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Lett 209, 31-37.
Lee, C.Y., Su, S.C., and Liaw, R.B. (1995). Molecular analysis of an extracellular protease gene from Vibrio parahaemolyticus. Microbiol-UK 141 2569-2576.
Letts, V.A., Klig, L.S., Bae-Lee, M., Carman, G.M., and Henry, S.A. (1983). Isolation of the yeast structural gene for the membrane-associated enzyme phosphatidylserine synthase. Proc Natl Acad Sci 80, 7279-7283.
Li, J., and Wang, X. (2019). Phospholipase D and phosphatidic acid in plant immunity. Plant Sci 279, 45-50.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Luo, Y., Asai, K., Sadaie, Y., and Helmann, J.D. (2010). Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function sigma factors. J Bacteriol 192, 5736-5745.
Maddocks, S.E., and Oyston, P.C. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol-UK 154, 3609-3623.
Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., et al. (2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743-749.
Matsumoto, K. (1997). Phosphatidylserine synthase from bacteria. Biochimica et biophysica acta 1348, 214-227.
McCarter, L. (1999). The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1, 51-57.
Meador, C.E., Parsons, M.M., Bopp, C.A., Gerner-Smidt, P., Painter, J.A., and Vora, G.J. (2007). Virulence gene- and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. Eur J Clin Microbiol Infect Dis 45, 1133-1139.
Medigue, C., Viari, A., Henaut, A., and Danchin, A. (1993). Colibri: a functional data base for the Escherichia coli genome. Microbiol Rev 57, 623-654.
Mileykovskaya, E.I., and Dowhan, W. (1993). Alterations in the electron transfer chain in mutant strains of Escherichia coli lacking phosphatidylethanolamine. J Biol Chem 268, 24824-24831.
Mitra, A., Kesarwani, A.K., Pal, D., and Nagaraja, V. (2011). WebGeSTer DB--a transcription terminator database. Nucleic Acids Res 39, D129-135.
Miyamoto, Y., Kato, T., Obara, Y., Akiyama, S., Takizawa, K., and Yamai, S. (1969). In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol 100, 1147-1149.
Moravec, A.R., Siv, A.W., Hobby, C.R., Lindsay, E.N., Norbash, L.V., Shults, D.J., Symes, S.J.K., and Giles, D.K. (2017). Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Appl Environ Microbiol 83, e01415-01417.
Moser, R., Aktas, M., Fritz, C., and Narberhaus, F. (2014). Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92, 959-972.
Nair, G.B., Ramamurthy, T., Bhattacharya, S.K., Dutta, B., Takeda, Y., and Sack, D.A. (2007). Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 20, 39-48.
Nakaguchi, Y., and Nishibuchi, M. (2005). The promoter region rather than its downstream inverted repeat sequence is responsible for low-level transcription of the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. J Bacteriol 187, 1849-1855.
Nikawa, J., Tsukagoshi, Y., Kodaki, T., and Yamashita, S. (1987). Nucleotide sequence and characterization of the yeast PSS gene encoding phosphatidylserine synthase. Eur J Biochem 167, 7-12.
Nomura, T., Hamashima, H., and Okamoto, K. (2000). Carboxy terminal region of haemolysin of Aeromonas sobria triggers dimerization. Microb Pathog 28, 25-36.
O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. J Cheminform 3, 33.
Okada, M., Matsuzaki, H., Shibuya, I., and Matsumoto, K. (1994). Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J Bacteriol 176, 7456-7461.
Ono, T., Park, K.S., Ueta, M., Iida, T., and Honda, T. (2006). Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect Immun 74, 1032-1042.
Paranjpye, R., Hamel, O.S., Stojanovski, A., and Liermann, M. (2012). Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl Environ Microbiol 78, 8631-8638.
Park, K.S., Ono, T., Rokuda, M., Jang, M.H., Iida, T., and Honda, T. (2004a). Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol Immunol 48, 313-318.
Park, K.S., Ono, T., Rokuda, M., Jang, M.H., Okada, K., Iida, T., and Honda, T. (2004b). Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72, 6659-6665.
Parsons, J.B., and Rock, C.O. (2013). Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52, 249-276.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J., and Schneider, D. (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51, 246-255.
Raetz, C.R. (1976). Phosphatidylserine synthetase mutants of Escherichia coli. Genetic mapping and membrane phospholipid composition. J Biol Chem 251, 3242-3249.
Raetz, C.R., Larson, T.J., and Dowhan, W. (1977). Gene cloning for the isolation of enzymes of membrane lipid synthesis: phosphatidylserine synthase overproduction in Escherichia coli. Proc Natl Acad Sci 74, 1412-1416.
Sakazaki, R., Iwanami, S., and Fukumi, H. (1963). Studies on the Enteropathogenic, Facultatively Halophilic Bacteria, Vibrio parahaemolyticus. I. Morphological, Cultural and Biochemical Properties and Its Taxonomical Position. Jpn J Med Sci Biol 16, 161-188.
Salomon, D., Gonzalez, H., Updegraff, B.L., and Orth, K. (2013). Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 8, e61086.
Selvy, P.E., Lavieri, R.R., Lindsley, C.W., and Brown, H.A. (2011). Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 111, 6064-6119.
Shi, W., Bogdanov, M., Dowhan, W., and Zusman, D.R. (1993). The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175, 7711-7714.
Shimohata, T., and Takahashi, A. (2010). Diarrhea induced by infection of Vibrio parahaemolyticus. J Med Investig: JMI 57, 179-182.
Shinoda, S. (2011). Sixty years from the discovery of Vibrio parahaemolyticus and some recollections. Biocontrol Sci 16, 129-137.
Sievers, F., and Higgins, D.G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27, 135-145.
Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for In vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat Biotech 1, 784-791.
Sohlenkamp, C., de Rudder, K.E., and Geiger, O. (2004). Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. J Bacteriol 186, 1667-1677.
Sohlenkamp, C., and Geiger, O. (2016). Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40, 133-159.
Sparrow, C.P., and Raetz, C.R. (1983). A trans-acting regulatory mutation that causes overproduction of phosphatidylserine synthase in Escherichia coli. J Biol Chem 258, 9963-9967.
Stone, S.J., Cui, Z., and Vance, J.E. (1998). Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. J Biol Chem 273, 7293-7302.
Su, Y.C., and Liu, C. (2007). Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24, 549-558.
Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E.A., Glass, C.K., Merrill, A.H., Jr., Murphy, R.C., Raetz, C.R., Russell, D.W., et al. (2007). LMSD: LIPID MAPS structure database. Nucleic Acids Res 35, D527-532.
Suffredini, E., Mioni, R., Mazzette, R., Bordin, P., Serratore, P., Fois, F., Piano, A., Cozzi, L., and Croci, L. (2014). Detection and quantification of Vibrio parahaemolyticus in shellfish from Italian production areas. Int J Food Microbiol 184, 14-20.
Tagomori, K., Iida, T., and Honda, T. (2002). Comparison of genome structures of vibrios, bacteria possessing two chromosomes. J Bacteriol 184, 4351-4358.
Takahashi, A., Kenjyo, N., Imura, K., Myonsun, Y., and Honda, T. (2000). Cl(-) secretion in colonic epithelial cells induced by the Vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin. Infect Immun 68, 5435-5438.
Thompson, J.R., Randa, M.A., Marcelino, L.A., Tomita-Mitchell, A., Lim, E., and Polz, M.F. (2004). Diversity and dynamics of a north atlantic coastal Vibrio community. Appl Environ Microbiol 70, 4103-4110.
Tian, W., Chen, C., Lei, X., Zhao, J., and Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins Nucleic Acids Res 46, W363-W367.
Tomohiro, S., Kawaguti, A., Kawabe, Y., Kitada, S., and Kuge, O. (2009). Purification and characterization of human phosphatidylserine synthases 1 and 2. Biochem J 418, 421-429.
Trevino-Quintanilla, L.G., Freyre-Gonzalez, J.A., and Martinez-Flores, I. (2013). Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. Curr Genomics 14, 378-387.
Vance, J.E., and Steenbergen, R. (2005). Metabolism and functions of phosphatidylserine. Prog Lipid Res 44, 207-234.
Vance, J.E., and Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831, 543-554.
Wang, C., Lee, J., Deng, Y., Tao, F., and Zhang, L.H. (2012). ARF-TSS: an alternative method for identification of transcription start site in bacteria. BioTechniques 52, 1-3.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303.
Weng, S.F., Chao, Y.F., and Lin, J.W. (2004). Identification and characteristic analysis of the ampC gene encoding beta-lactamase from Vibrio fischeri. Biochem Biophys Res Commun 314, 838-843.
Xia, W., and Dowhan, W. (1995). In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci 92, 783-787.
Xia, Y., Chu, W., Qi, Q., and Xun, L. (2015). New insights into the QuikChange process guide the use of Phusion DNA polymerase for site- directed mutagenesis. Nucleic Acids Res 43, e12.
Yarbrough, M.L., Li, Y., Kinch, L.N., Grishin, N.V., Ball, H.L., and Orth, K. (2009). AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269-272.
Yu, Y., Yang, H., Li, J., Zhang, P., Wu, B., Zhu, B., Zhang, Y., and Fang, W. (2012). Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 194, 827-835.
Zhang, L., and Orth, K. (2013). Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 16, 70-77.
Zhang, Y.N., Lu, F.P., Chen, G.Q., Li, Y., and Wang, J.L. (2009). Expression, purification, and characterization of phosphatidylserine synthase from Escherichia coli K12 in Bacillus subtilis. J Agric Food Chem 57, 122-126.
Zhou, X., Gewurz, B.E., Ritchie, J.M., Takasaki, K., Greenfeld, H., Kieff, E., Davis, B.M., and Waldor, M.K. (2013). A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 3, 1690-1702.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77244-
dc.description.abstract腸炎弧菌在台灣是主要引起食物中毒的病原菌之一,磷脂醯絲胺酸合成酶 (Pss) 為弧菌合成磷脂質組成份的一個決定性的酵素,可催化胞苷二磷酸二醯甘油和L型絲胺酸成為磷脂醯絲胺酸及5’-胞核苷單磷酸鹽。本研究欲探討腸炎弧菌中磷脂醯絲胺酸合成酶基因 (pss) 在細菌中的表現及此基因所生成的蛋白質之功能及特性。pss的mRNA於生長的指數期表現,其轉錄起始點位於轉譯起始點上游37個核苷酸,並藉由報導基因的試驗及RNA聚合酶之電泳位移分析證明pss基因的啓動子區域。另外,建構可能的調控者VPA0041之缺陷株發現VPA0041並不能調控pss基因在轉錄層次的表現。此外,由免疫沉澱法及液相串連式質譜儀證明腸炎弧菌的細胞內確實會轉譯出Pss蛋白質。為證實Pss蛋白質具有催化的功能,利用大腸桿菌大量表現可溶的重組Pss,並將其純化進行酵素活性分析。藉由基質輔助雷射解析串聯飛行時間質譜儀,可以證明Pss酵素催化基質後的產物磷脂醯絲胺酸的生成,使用分光光譜儀可以證實Pss酵素催化反應之產物5’-胞核苷單磷酸鹽的產生。另外,Pss最適反應溫度為40℃,最適pH為8,並受到20 mM二價金屬離子的抑制。再者,經由建構Pss的蛋白質立體結構模型,以及將模型與基質進行分子對接的模擬,及定點突變的製作,推測其酵素活性區存在於與其他磷脂酶D家族具保守性的兩個HKD (His(X)Lys(X)4Asp) 區域。弧菌屬中的Pss是具高保守性的蛋白質,本論文研究結果可促進了解其他弧菌之磷脂醯絲胺酸合成酶的基因及生化特性。zh_TW
dc.description.abstractVibrio parahaemolyticus is one of the main food pathogens that cause foodborne illness in Taiwan. Phosphatidylserine synthase (Pss) is a crital enzyme to synthesize phospholipid, which can catzlyze cytidine diphosphate diacylglycerol and L‐serine to form phosphatidylserine and cytidine 5’‐ monophosphate. This study would investigate the gene expression of the phosphatidylserine synthase gene (pss) in V. parahaemolyticus, and the function and the characteristics of Pss. pss mRNA was found to be expressed mainly during the exponential phase. The transcriptional start site of pss was mapped through sequencing and was identified at −37 nucleotides upstream of the start codon. In addition, the promoter was identified using a lux reporter assay and gel shift assay with an RNA polymerase. Furthermore, one predicted Pss regulator deletion mutant ΔVPA0041 was constructed, however, VPA0041 was found that it was no effect on regulating the transcriptional level of pss. To analyze the catalytic activity, a soluble form of His6‐tagged recombinant Pss was overexpressed and purified from Escherichia coli. Using matrix‐assisted laser desorption ionizationtime of flight mass spectrometry, the formation of phosphatidylserine was proved. The production of cytidine 5’‐monophosphate was confirmed by using spectrophotometer. Moreover, the optimum temperature of Pss was 40°C and the optimum pH of Pss was 8. The activity of Pss was inhibited by 20 mM divalent metal. In addition, through the construction of the three-dimensional structure of Pss, the simulation of molecular docking of the model with the substrate, and site-directed mutagenesis, the active region of the enzyme is presumed to be the two HKD (His(X)Lys(X)4Asp) regions conserved with other phospholipase D families. Since Pss is a conserved protein in Vibrio, this study can help to understand genetic and biochemical characterization of Pss in other Vibrio.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:29Z (GMT). No. of bitstreams: 1
ntu-108-D00623005-1.pdf: 4968581 bytes, checksum: ffaa4ce98d4f88a452da1861a1917556 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
表次 ix
圖次 x
附錄表次 xii
附錄圖次 xiii
縮寫表 xiv
第一章 前言 1
一、文獻回顧 1
1. 弧菌 1
2. 腸炎弧菌 1
3. 磷脂質 3
4. 磷脂醯絲胺酸合成酶 5
5. 磷脂醯絲胺酸合成酶調控者PssR 6
二、研究動機 8
第二章 pss基因分析 9
摘要 9
一、前言 9
二、材料與方法 9
1. 菌株、質體及引子 9
2. 生物資訊工具 9
3. RNA萃取 10
4. 即時定量反轉錄聚合酶連鎖反應(qRT-PCR) 11
5. 轉錄起始點之分析 11
6. 建構luxAB訊號載體 12
7. 電穿孔轉形 (electroporation) 12
8. 冷光強度之測定 13
9. 建構RpoD表現載體 13
10. 表現及純化RpoD重組蛋白質 13
11. 電泳位移分析法(Electrophoretic Mobility Shift Assay,EMSA) 14
12. 建構VPA0041缺陷株 15
13. 南方雜合 16
14. 統計分析 17
三、結果 17
1. 腸炎弧菌的Pss是第一型的PS合成酶 18
2. pss基因的表現與生長的時期相關 18
3. 鑑定pss基因的啓動子 18
4. VPA0041不能調控pss基因的轉錄 19
四、討論 20
五、結論 21
第三章 Pss蛋白質的表現及酵素活性分析 22
摘要 22
一、前言 22
二、材料與方法 23
1. 菌株、質體及引子 23
2. 建構myc-pss菌 23
3. 純化Myc-Pss 24
4. 西方雜合 24
5. 胰蛋白酶膠內酶解 (In gel trypsin digestion) 25
6. 建構Pss表現載體 25
7. 表現及純化重組Pss 26
8. MALDI-TOF質譜分析酵素活性 27
9. Cytidine 5’ ‐ monophosphate (CMP) 標準曲線的製作 28
10. Pss最適反應溫度測試 28
11. Pss最適反應pH測試 28
12. 測試二價金屬離子對Pss的影響 28
13. 測試CDP‐DAG (18:1/18:1) 是否可作為Pss的基質 29
三、結果 29
1. 鑑定腸炎弧菌會轉譯出Pss蛋白質 29
2. 腸炎弧菌重組蛋白質於大腸桿菌內表現及純化 30
3. MALDI‐TOF質譜儀分析酵素活性 30
4. 紫外光分光光度計分析Pss酵素活性 31
四、討論 31
五、結論 32
第四章 Pss結構分析 33
摘要 33
一、前言 33
二、材料與方法 33
1. 菌株、質體及引子 33
2. 模擬Pss之蛋白質立體結構 33
3. 分析Pss酵素的活性區 34
4. 模擬Pss酵素與基質CDP-DAG(16:0)分子對接 34
5. 序列排比分析弧菌屬的Pss 34
6. 製作Pss HKD區之Histidine定點突變 34
7. 定點突變Pss酵素H131A及H352A之Pss活性分析 35
三、結果 35
1. 建構Pss的三維蛋白質模型並模擬與基質分子對接 35
2. Pss中的兩個HKD 區的兩個Histidine對於酵素活性是重要的 36
四、討論 36
五、結論 36
總結 38
未來展望 39
參考文獻 79
附錄表 96
附錄圖 97
-
dc.language.isozh_TW-
dc.subject磷脂醯絲胺酸zh_TW
dc.subject5’-胞核?單磷酸鹽zh_TW
dc.subject磷脂醯絲胺酸合成?zh_TW
dc.subject磷脂質zh_TW
dc.subject磷脂?D家族zh_TW
dc.subject腸炎弧菌zh_TW
dc.subjectVibrio parahaemolyticusen
dc.subjectphospholipiden
dc.subjectphosphatidylserine synthaseen
dc.subjectphosphatidylserineen
dc.subjectcytidine 5’?monophosphateen
dc.subjectphospholipase D familyen
dc.title腸炎弧菌磷脂醯絲胺酸合成酶基因及生化特性之研究zh_TW
dc.titleThe genetic and biochemical characterization of phosphatidylserine synthase in Vibrio parahaemolyticusen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee羅禮強;陳翰民;劉啟德;余美萱zh_TW
dc.contributor.oralexamcommitteeLee-Chiang Lo;Han-Min Chen;Chi-Te Liu;Mei?Shiuan Yuen
dc.subject.keyword腸炎弧菌,磷脂質,磷脂醯絲胺酸合成?,磷脂醯絲胺酸,5’-胞核?單磷酸鹽,磷脂?D家族,zh_TW
dc.subject.keywordVibrio parahaemolyticus,phospholipid,phosphatidylserine synthase,phosphatidylserine,cytidine 5’?monophosphate,phospholipase D family,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU201902760-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved