請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77241完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Ya-Hsuan Liou) | |
| dc.contributor.author | Tsung-Fu Hsieh | en |
| dc.contributor.author | 謝宗甫 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:52:22Z | - |
| dc.date.available | 2021-07-10T21:52:22Z | - |
| dc.date.copyright | 2021-03-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-29 | |
| dc.identifier.citation | 1. Agrawal, A. and P.G. Tratnyek, Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal. Environmental Science Technology, 1996. 30(1): p. 153-160. 2. Azuma, N., A. Matsumoto, and J. Shiokawa, ESR study on photoreaction of formato complex of europium(III) in HCOOH-HCOONa buffer solution. Polyhedron, 1983. 2(1): p. 63-66. 3. Bae, B.-U., et al., Improved brine recycling during nitrate removal using ion exchange. Water Research, 2002. 36(13): p. 3330-3340. 4. Barat, F., et al., Flash photolysis of the nitrate ion in aqueous solution: Excitation at 200 nm. Journal of the Chemical Society A: Inorganic, Physical, and Theoretical Chemistry, 1970: p. 1982-1986. 5. Bonner, F.T. and N.Y. Wang, Reduction of nitric oxide by hydroxylamine. 1. Kinetics and mechanism. Inorganic Chemistry, 1986. 25(11): p. 1858-1862. 6. Braida, W. and S.K. Ong, Decomposition of Nitrite Under Various pH and Aeration Conditions. Water, Air, and Soil Pollution, 2000. 118(1): p. 13-26. 7. Brillas, E., I. Sirés, and M.A. Oturan, Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 2009. 109(12): p. 6570-6631. 8. Buxton, G.V., et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. Journal of physical and chemical reference data, 1988. 17(2): p. 513-886. 9. Canfield, D.E., A.N. Glazer, and P.G. Falkowski, The Evolution and Future of Earth’s Nitrogen Cycle. Science, 2010. 330(6001): p. 192-196. 10. Chen, G., et al., Nitrate Removal via a Formate Radical-Induced Photochemical Process. Environmental Science Technology, 2019. 53(1): p. 316-324. 11. Cheng, S.-F. and S.-C. Wu, The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere, 2000. 41(8): p. 1263-1270. 12. Cheng, S.F., C.Y. Huang, and J.Y. Liu, Study of different methods for enhancing the nitrate removal efficiency of a zero-valent metal process. Water Science and Technology, 2006. 53(11): p. 81-87. 13. Chiu, Y.-T., et al., Reduction of nitrate to nitrite in water by acid-washed zero-valent zinc. Separation Science and Technology, 2020. 55(4): p. 761-770. 14. Choe, S., et al., Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000. 41(8): p. 1307-1311. 15. Chu, L. and C. Anastasio, Quantum Yields of Hydroxyl Radical and Nitrogen Dioxide from the Photolysis of Nitrate on Ice. Journal of Physical Chemistry A, 2003. 107(45): p. 9594-9602. 16. Cofie, O., et al., Co-composting of solid waste and fecal sludge for nutrient and organic matter recovery. Vol. 3. 2016: IWMI. 17. Columbia, M.R. and P.A. Thiel, The interaction of formic acid with transition metal surfaces, studied in ultrahigh vacuum. Journal of Electroanalytical Chemistry, 1994. 369(1): p. 1-14. 18. Daniels, M., R.V. Meyers, and E.V. Belardo, Photochemistry of the aqueous nitrate system. I. Excitation in the 300-m.mu. band. The Journal of Physical Chemistry, 1968. 72(2): p. 389-399. 19. De Laurentiis, E., et al., The fate of nitrogen upon nitrite irradiation: Formation of dissolved vs. gas-phase species. Journal of Photochemistry and Photobiology A: Chemistry, 2015. 307-308: p. 30-34. 20. Doyle, J.G., et al., Quantification of total polychlorinated biphenyl by dechlorination to biphenyl by Pd/Fe and Pd/Mg bimetallic particles. Microchemical Journal, 1998. 60(3): p. 290-295. 21. Drozd, V.M., et al., Effect of nitrates in drinking water on the prevalence of thyroid cancer and other thyroid diseases: a literature review and post-Chernobyl research experience in Belarus. Cytology and Genetics, 2016. 50(6): p. 372-376. 22. Duca, C., G. Imoberdorf, and M. Mohseni, Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation. Journal of Environmental Science and Health, Part A, 2017. 52(6): p. 524-532. 23. Elovitz, M.S., U. von Gunten, and H.-P. Kaiser, Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone: Science Engineering, 2000. 22(2): p. 123-150. 24. Fan, L., et al., Selective reduction of NO3−-N from wastewater to N2 by Zn/Ag bimetallic particles combined with wet ammonia oxidation process. Separation and Purification Technology, 2018. 197: p. 325-335. 25. Fanning, J.C., The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews, 2000. 199(1): p. 159-179. 26. Ferguson, S.J., Denitrification and its control. Antonie van Leeuwenhoek, 1994. 66(1-3): p. 89-110. 27. Fischer, M. and P. Warneck, Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution. Journal of Physical Chemistry, 1996. 100(48): p. 18749-18756. 28. Fried, J.J. Nitrates and Their Control in the EEC Aquatic Environment. in Nitrate Contamination. 1991. Berlin, Heidelberg: Springer Berlin Heidelberg. 29. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38. 30. Gankanda, A. and V.H. Grassian, Nitrate Photochemistry on Laboratory Proxies of Mineral Dust Aerosol: Wavelength Dependence and Action Spectra. The Journal of Physical Chemistry C, 2014. 118(50): p. 29117-29125. 31. Garron, A. and F. Epron, Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water. Water Research, 2005. 39(13): p. 3073-3081. 32. Goldstein, S. and G. Czapski, Formation of Peroxynitrite from the Nitrosation of Hydrogen Peroxide by an Oxygenated Nitric Oxide Solution. Inorganic Chemistry, 1996. 35(20): p. 5935-5940. 33. Goldstein, S. and J. Rabani, Mechanism of Nitrite Formation by Nitrate Photolysis in Aqueous Solutions: The Role of Peroxynitrite, Nitrogen Dioxide, and Hydroxyl Radical. Journal of the American Chemical Society, 2007. 129(34): p. 10597-10601. 34. Goldstein, S., et al., Oxidation of peroxynitrite by inorganic radicals: A pulse radiolysis study. Journal of the American Chemical Society, 1998. 120(22): p. 5549-5554. 35. Gonzalez, M.G., et al., Vacuum-ultraviolet photolysis of aqueous reaction systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004. 5(3): p. 225-246. 36. Groth, W. and H. Rommel, Photochemische Untersuchungen im Schumann-Ultraviolett Nr. 12. Zeitschrift für Physikalische Chemie, 1965. 45(1_2): p. 96-116. 37. Hicks, M. and J.M. Gebicki, Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Letters, 1986. 199(1): p. 92-94. 38. Hörold, S., et al., Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today, 1993. 17(1-2): p. 21-30. 39. Huang, C.-P., H.-W. Wang, and P.-C. Chiu, Nitrate reduction by metallic iron. Water Research, 1998. 32(8): p. 2257-2264. 40. Huang, L., et al., Removal of Ammonia by OH Radical in Aqueous Phase. Environmental Science Technology, 2008. 42(21): p. 8070-8075. 41. Hudak, P.F., Regional trends in nitrate content of Texas groundwater. Journal of Hydrology, 2000. 228(1): p. 37-47. 42. Hughes, M.N., Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1999. 1411(2): p. 263-272. 43. Hughes, M.N. and H.G. Nicklin, The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968: p. 450-452. 44. Jakszyn, P. and C.-A. Gonzalez, Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World journal of gastroenterology, 2006. 12(27): p. 4296-4303. 45. Janik, I., D.M. Bartels, and C.D. Jonah, Hydroxyl Radical Self-Recombination Reaction and Absorption Spectrum in Water Up to 350 °C. The Journal of Physical Chemistry A, 2007. 111(10): p. 1835-1843. 46. Jensen, V.B., et al., Nitrate in Potable Water Supplies: Alternative Management Strategies. Critical Reviews in Environmental Science and Technology, 2014. 44(20): p. 2203-2286. 47. Junge, C.E., The distribution of ammonia and nitrate in rain water over the United States. Eos, Transactions American Geophysical Union, 1958. 39(2): p. 241-248. 48. Kaçaroğlu, F. and G. Günay, Groundwater nitrate pollution in an alluvium aquifer, Eskişehir urban area and its vicinity, Turkey. Environmental Geology, 1997. 31(3-4): p. 178-184. 49. Kim, Y.H. and E. Carraway, Reductive dechlorination of TCE by zero valent bimetals. Environmental technology, 2003. 24(1): p. 69-75. 50. King, R.B., et al., Noble metal-catalyzed homogeneous and heterogeneous processes in treating simulated nuclear waste media with formic acid. Journal of Molecular Catalysis A: Chemical, 1996. 107(1): p. 145-152. 51. Lagerstedt, E., G. Jacks, and F. Sefe, Nitrate in groundwater and N circulation in eastern Botswana. Environmental Geology, 1994. 23(1): p. 60-64. 52. LaVerne, J.A., OH radicals and oxidizing products in the gamma radiolysis of water. Radiation research, 2000. 153(2): p. 196-200. 53. Le, Y., et al., Mechanism study of reduction of CO2 into formic acid by in-situ hydrogen produced from water splitting with Zn: Zn/ZnO interface autocatalytic role. Journal of Energy Chemistry, 2017. 26(5): p. 936-941. 54. Lee, C., R. Weiss, and D. Horvath, Effects of nitrogen fertilization on the thyroid function of rats fed 40% orchard grass diets. The Journal of nutrition, 1970. 100(10): p. 1121-1126. 55. Liedtke, W., et al., Vanilloid receptor–related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell, 2000. 103(3): p. 525-535. 56. Liou, Y.H., et al., Selective reduction of NO3− to N2 with bimetallic particles of Zn coupled with palladium, platinum, and copper. Chemical Engineering Journal, 2012. 181-182: p. 236-242. 57. Liou, Y.H., et al., Selective Decomposition of Aqueous Nitrate into Nitrogen Using Iron Deposited Bimetals. Environmental Science Technology, 2009. 43(7): p. 2482-2488. 58. Liu, Y., et al., Selective Reduction of Nitrate into Nitrogen Using Cu/Fe Bimetal Combined with Sodium Sulfite. Industrial Engineering Chemistry Research, 2019. 58(13): p. 5175-5185. 59. Løgager, T. and K. Sehested, Formation and decay of peroxynitrous acid: A pulse radiolysis study. Journal of Physical Chemistry, 1993. 97(25): p. 6664-6669. 60. Lohar, V., R. Arora, and V. Arora, Nitrates and associated health hazards. 2010. 61. Mack, J. and J.R. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 1999. 128(1): p. 1-13. 62. Małecki, A. and B. Małecka, Formation of N2O during thermal decomposition of d-metal hydrates nitrates. Thermochimica Acta, 2006. 446(1): p. 113-116. 63. Manevich, Y., K.D. Held, and J.E. Biaglow, Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiation research, 1997. 148(6): p. 580-591. 64. Mark, G., et al., The photochemistry of aqueous nitrate ion revisited. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 101(2-3): p. 89-103. 65. Matheson, L.J. and P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal. Environmental science technology, 1994. 28(12): p. 2045-2053. 66. Mikami, I., et al., Kinetic and adsorption studies on the hydrogenation of nitrate and nitrite in water using Pd-Cu on active carbon support. Applied Catalysis B: Environmental, 2003. 44(1): p. 79-86. 67. Montesinos, V.N., et al., Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO2. RSC Advances, 2015. 5(104): p. 85319-85322. 68. Mora-Sero, I., et al., Photoelectrochemical behavior of nanostructured TiO2 thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: A model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements. The Journal of Physical Chemistry B, 2005. 109(8): p. 3371-3380. 69. Mosquera, A.A., et al., Exciton and core-level electron confinement effects in transparent ZnO thin films. Scientific reports, 2013. 3(1): p. 1-7. 70. Peto, R., et al., Effects on 4080 Rats of Chronic Ingestion of lt;em gt;N lt;/em gt;-Nitrosodiethylamine or lt;em gt;N lt;/em gt;-Nitrosodimethylamine: A Detailed Dose-Response Study. Cancer Research, 1991. 51(23 Part 2): p. 6415. 71. Petriconi, G.L. and H.M. Papee, Decomposition of sodium nitrate solutions under ultra-violet irradiation at 25° C. Journal of Inorganic and Nuclear Chemistry, 1968. 30(6): p. 1525-1535. 72. Pintar, A., J. Batista, and J. Levec, Potential of mono-and bimetallic catalysts for liquid-phase hydrogenation of aqueous nitrite solutions. Water science and technology, 1998. 37(8): p. 177-185. 73. Pintar, A., et al., Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Applied Catalysis B: Environmental, 1996. 11(1): p. 81-98. 74. Prüsse, U. and K.-D. Vorlop, Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A: Chemical, 2001. 173(1): p. 313-328. 75. Puckett, L.J., Identifying the major sources of nutrient water pollution. Environmental Science Technology, 1995. 29(9): p. 408A-414A. 76. Ruiz-Beviá, F. and M.J. Fernández-Torres, Effective catalytic removal of nitrates from drinking water: An unresolved problem? Journal of Cleaner Production, 2019. 217: p. 398-408. 77. Sa, J., et al., Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental, 2009. 85(3-4): p. 192-200. 78. Scharko, N.K., A.E. Berke, and J.D. Raff, Release of Nitrous Acid and Nitrogen Dioxide from Nitrate Photolysis in Acidic Aqueous Solutions. Environmental Science Technology, 2014. 48(20): p. 11991-12001. 79. Schuttlefield, J., et al., Photochemistry of Adsorbed Nitrate. Journal of the American Chemical Society, 2008. 130(37): p. 12210-12211. 80. Shi, J., C. Long, and A. Li, Selective reduction of nitrate into nitrogen using Fe–Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH. Chemical Engineering Journal, 2016. 286: p. 408-415. 81. Shinagawa, T., et al., Effects of counteranions and dissolved oxygen on chemical ZnO deposition from aqueous solutions. Journal of The Electrochemical Society, 2009. 156(5): p. H320. 82. Siantar, D.P., et al., Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Research, 1996. 30(10): p. 2315-2322. 83. Stanbury, D.M., Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution, in Advances in Inorganic Chemistry, A.G. Sykes, Editor. 1989, Academic Press. p. 69-138. 84. Strebel, O., W.H.M. Duynisveld, and J. Böttcher, Nitrate pollution of groundwater in western Europe. Agriculture, Ecosystems Environment, 1989. 26(3): p. 189-214. 85. Strukul, G., et al., Sol-gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis today, 1996. 27(1-2): p. 209-214. 86. Su, C. and R.W. Puls, Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environmental science technology, 2004. 38(9): p. 2715-2720. 87. Su, H., et al., Photodissociation of formic acid. The Journal of Chemical Physics, 2000. 113(5): p. 1891-1897. 88. Sun, Q. and W. Li, Inorganic-whisker-reinforced polymer composites: synthesis, properties and applications. 2015: CRC Press. 89. Svoboda, O., L. Kubelova, and P. Slavicek, Enabling forbidden processes: Quantum and solvation enhancement of nitrate anion UV absorption. The Journal of Physical Chemistry A, 2013. 117(48): p. 12868-12877. 90. Svoboda, O.e. and P. Slavicek, Is Nitrate Anion Photodissociation Mediated by Singlet–Triplet Absorption? The journal of physical chemistry letters, 2014. 5(11): p. 1958-1962. 91. Sweeny, K.H. and J.R. Fischer, Reductive degradation of halogenated pesticides. 1972, Google Patents. 92. Thøgersen, J., et al., Fast photodynamics of aqueous formic acid. The Journal of Physical Chemistry A, 2004. 108(37): p. 7483-7489. 93. Thøgersen, J., et al., Primary photochemistry of peroxynitrite in aqueous solution. Chemical Physics Letters, 2015. 641: p. 187-192. 94. Thorburn, P., et al., Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems Environment, 2003. 94: p. 49-58. 95. Treinin, A. and E. Hayon, Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. Journal of the American Chemical Society, 1970. 92(20): p. 5821-5828. 96. Tugaoen, H.O.N., et al., Challenges in photocatalytic reduction of nitrate as a water treatment technology. Science of the Total Environment, 2017. 599: p. 1524-1551. 97. Villora-Picó, J.J., et al., Metal-free abatement of nitrate contaminant from water using a conducting polymer. Chemical Engineering Journal, 2021. 403: p. 126228. 98. Vione, D., et al., Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere, 2001. 45(6): p. 893-902. 99. Vitousek, P.M., et al., HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES. Ecological Applications, 1997. 7(3): p. 737-750. 100. Wagner, I., H. Strehlow, and G. Busse, Flash photolysis of nitrate ions in aqueous solution. Zeitschrift für Physikalische Chemie, 1980. 123(1): p. 1-33. 101. Wang, B., et al., Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation. Separation and Purification Technology, 2020. 248: p. 117061. 102. Wang, J. and R. Bai, Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV–Vis irradiation. Water Research, 2016. 101: p. 103-113. 103. Wang, J., et al., Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis. Chemosphere, 2017. 184: p. 1003-1011. 104. Wang, L., et al., Some issues limiting photo(cata)lysis application in water pollutant control: A critical review from chemistry perspectives. Water Research, 2020. 174: p. 115605. 105. Wang, Z., et al., Performance of L-Cu Mn-nZVFe@B nanomaterial on nitrate selective reduction under UV irradiation and persulfate activation in the presence of oxalic acid. Journal of Hazardous Materials, 2021. 401: p. 123378. 106. Warneck, P. and C. Wurzinger, Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. The Journal of Physical Chemistry, 1988. 92(22): p. 6278-6283. 107. Washida, N., et al., Vacuum UV photolysis of NH3: rotational distribution of NH(c1Π) and the heat of formation of NH. Chemical Physics Letters, 1985. 114(3): p. 274-278. 108. Wayne, R.P., et al., The nitrate radical: Physics, chemistry, and the atmosphere. Atmospheric Environment. Part A. General Topics, 1991. 25(1): p. 1-203. 109. World Health, O., Nitrate and nitrite in drinking-water: background document for development of WHO guidelines for drinking-water quality. 2003, World Health Organization: Geneva. 110. Wu, Y., et al., Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation. Journal of Cleaner Production, 2020. 273: p. 123065. 111. Xu, J., et al., Chemical removal of nitrate from water by aluminum-iron alloys. Chemosphere, 2017. 166: p. 197-202. 112. Young, D., Computational chemistry: a practical guide for applying techniques to real world problems. 2004: John Wiley Sons. 113. Zafiriou, O.C. and R. Bonneau, WAVELENGTH-DEPENDENT QUANTUM YIELD OF OH RADICAL FORMATION FROM PHOTOLYSIS OF NITRITE ION IN WATER. Photochemistry and Photobiology, 1987. 45(S1): p. 723-727. 114. Zawaideh, L.L. and T.C. Zhang, The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems. Water science and technology, 1998. 38(7): p. 107-115. 115. Zhang, D., et al., Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation. Chemical Engineering Journal, 2019. 359: p. 1195-1204. 116. Zhang, Q., et al., Understanding and modeling the formation and transformation of hydrogen peroxide in water irradiated by 254 nm ultraviolet (UV) and 185 nm vacuum UV (VUV): Effects of pH and oxygen. Chemosphere, 2020. 244: p. 125483. 117. Zhang, W., et al., Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems Environment, 1996. 59(3): p. 223-231. 118. Zhang, W.-x., C.-B. Wang, and H.-L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis today, 1998. 40(4): p. 387-395. 119. Zigler, J.S., et al., Analysis of the cytotoxic effects of light-exposed hepes-containing culture medium. In Vitro Cellular Developmental Biology, 1985. 21(5): p. 282-287. 120. 李培峰, et al., 水体中亚硝酸盐的光降解. 环境化学, 2011. 30(11): p. 1883-1888. 121. 洪宜君, 零價鋅及鈀鋅雙金屬對水中硝酸鹽還原脫硝之研究, in 環境工程學研究所. 2006, 國立臺灣大學. p. 1-127. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77241 | - |
| dc.description.abstract | 本研究以成本低廉、反應迅速且效果良好的零價金屬還原法作為基礎,結合光還原之技術,將硝酸鹽還原為氮氣。鈀鋅雙金屬負載比例實驗中,最佳材料為20 wt.% Pd/Zn,其氮氣選擇性從酸洗後鋅粉之29.59%大幅提升至78.53%。然而貴金屬價錢昂貴、金屬材料污泥處理繁複,且副產物仍未完全符合法規標準,故本研究結合光還原技術,解決中間產物殘留之問題,並提升氮氣的選擇性。紫外光降解亞硝酸鹽先導實驗中,最佳反應條件為──紫外光波長254 nm,加入甲酸且不調整酸鹼值,得到近100%的亞硝酸根降解率,氮氣選擇性則為85%,氨氮產生量幾乎為零,顯現該技術降解亞硝酸根之潛力。本研究將上述兩種技術結合為──光輔助雙金屬還原硝酸鹽。在重量負載比例實驗中,得到Zn及1 wt.% Pd/Zn為最佳材料,相較於單純使用雙金屬,光輔助系統巨幅地降低貴金屬負載量且提高氮氣選擇性約14%,並將兩種材料用於後續實驗,得到以下結論:(1)兩步驟並在合適時間加甲酸,能有效地將〖∙CO〗_2^-作用於亞硝酸根上,提高氮氣選擇性;(2)甲酸添加量與〖∙CO〗_2^-產量成正比,然而過多甲酸對降解效果並沒有顯著幫助,甚至對於鈀鋅雙金屬有負面影響;(3)當材料添加量由12.30 g/L降至3.08 g/L時,雖然反應所需時間延長,但氮氣選擇性並不受影響,顯示光輔助可有效降低材料使用量,進而減少材料之污泥殘留,甚至能避免金屬離子溶於水中之風險;(4)相較於氮氣,曝氬氣更能有效地去除水中溶氧,而溶氧會使〖∙CO〗_2^-降解效果變差,因此曝氬氣能提高氮氣選擇性。最終Zn及1 wt.% Pd/Zn皆得到近乎100%硝酸鹽降解率,而氮氣選擇性則分別為92.29%及92.34%。零價鋅取得和鈀鋅雙金屬相同的效果,由於其價格便宜且製程簡單,故成為較佳的材料選擇。相較於單純使用雙金屬,本研究在光輔助下大幅降低貴金屬負載20 wt.%,且提高氮氣選擇性14%,並能在減少材料使用量四分之三的情況下,達到相同的硝酸鹽降解率及氮氣選擇性。 | zh_TW |
| dc.description.abstract | This research applied the low-cost, fast-reacting, and effective zero-valent metal reduction method, combined with photo-reduction technologies, to convert nitrate to N2.The best material, 20 wt.% Pd/Zn, greatly increased the N2 selectivity from 29.59% of pretreated Zn to 78.53%, in the experiment of Pd/Zn bimetallic loading ratio. However, precious metals are expensive, metal material sludge treatment is complicated, and the by-products still do not fully meet the regulatory standards. Therefore, this research combines photo-reduction technology to solve the problem of intermediate product residues and improve N2 selectivity. Nearly 100% conversion rate of nitrite is obtained, N2 selectivity is 85%, and NH4+ production is almost zero, from UV pilot experimtent, showing the potential of this technology to degrade nitrite. The best reaction conditions are: UV wavelength of 254 nm, adding formic acid without adjusting the pH value. Photoassisted bimetallic reduction is a combination of the above two technologies. Zn and 1 wt.% Pd/Zn are obtained as the best materials, in the weight loading ratio experiment. The photo-assisted system greatly 'reduces the precious metal loading' and increases the N2 selectivity about 14%, compared to use of bimetal alone. Applying the above two materials to subsequent experiments, the following conclusions are obtained: (1) Two steps and adding acid at a suitable time can effectively make 〖∙CO〗_2^- act on nitrite and improve N2 selectivity; (2) The amount of formic acid added is directly proportional to the yield of 〖∙CO〗_2^-. However, too much formic acid does not significantly improve the degradation effect, and even has a negative effect on the Pd/Zn; (3) When the amount of materials are reduced from 12.30 g/L to 3.08 g/L, although the reaction time is prolonged, the N2 selectivity is not affected. It shows that photoassisted can effectively reduce the amount of material used, thereby reducing 'metal material sludge' and even avoid the 'risk of dissolving metal in water'; (4) Ar aeration can remove dissolved oxygen in water more effectively, compared with N2. Dissolved oxygen will make the effect of 〖∙CO〗_2^- worse, so Ar aeration can improve N2 selectivity. The results shows that 100% nitrate removal efficiency and about 92% N2 selectivity were achieved when using Zn or 1 wt.% Pd/Zn. Compared with the use of bimetal alone, under photoassisted systems, this study greatly reduces the precious metal loading by 20 wt.%, and increases the N2 selectivity by 14%, and can achieve the same effect while reducing the material usage by three-quarters. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:22Z (GMT). No. of bitstreams: 1 U0001-2701202121225000.pdf: 7012022 bytes, checksum: c12617590661ccd0847411aac15d3ccf (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的與內容 3 第二章 文獻回顧 4 2.1 硝酸鹽之污染與危害 4 2.1.1 硝酸鹽污染來源 4 2.1.2 硝酸鹽污染之分佈 5 2.1.3 硝酸鹽氮對人體之危害 7 2.1.4 我國硝酸鹽水質法規 9 2.2 脫硝技術之回顧 10 2.2.1 相分離技術(非破壞性) 11 2.2.2 轉化技術(破壞性) 14 2.2.3 複合型選擇性還原硝酸鹽為氮氣技術 19 2.3 零價金屬脫硝之技術 22 2.3.1 零價金屬處理技術 22 2.3.2 零價鐵脫硝反應機制 22 2.3.3 零價鋅脫硝反應機制 24 2.4 雙金屬(bimetallic)之技術 25 2.4.1 零價鋅雙金屬文獻回顧 25 2.4.2 鈀鋅雙金屬脫硝反應機制 28 2.4.3 鈀鋅雙金屬脫硝反應之參數因子 29 2.5 硝酸鹽氮之光分解文獻回顧 32 2.5.1 硝酸鹽光分解 32 2.5.2 亞硝酸鹽光分解 36 2.5.3 氨氮光分解 39 2.6 甲酸 40 2.6.1 甲酸光分解 40 2.6.2 作為電洞捕獲劑 43 2.6.3 作為還原劑 44 2.7 自由基 46 2.7.1 氫氧自由基 46 2.7.2 二氧化碳陰離子自由基 51 第三章 實驗方法及設備 55 3.1 實驗架構 55 3.2 實驗材料製備 55 3.2.1 零價鋅酸洗 55 3.2.2 鈀鋅雙金屬製備 56 3.3 產物分析方法 58 3.3.1 氨氮檢測及紫外光/可見光分光光譜儀 58 3.3.2 離子層析儀 59 3.3.3 高效液相層析儀 60 3.4 材料表面特性分析 60 3.4.1 場發射掃描式電子顯微鏡 / 能量分散光譜儀 60 3.4.2 X光吸收光譜 61 3.4.3 X-射線繞射光譜儀 61 3.5 零價鋅及鈀鋅雙金屬降解硝酸鹽實驗 62 3.6 紫外光降解亞硝酸鹽先導實驗 63 3.7 紫外光輔助鈀鋅雙金屬降解硝酸鹽實驗 65 第四章 結果與討論 68 4.1 零價鋅及鈀鋅雙金屬降解硝酸鹽實驗 68 4.1.1 鋅粉酸洗及保存實驗 68 4.1.2 空白實驗 72 4.1.3 鋅粉酸洗前後動力實驗 73 4.1.4 鈀鋅雙金屬製備實驗 75 4.1.5 鈀鋅雙金屬負載比例實驗 76 4.1.6 零價鋅及鈀鋅雙金屬降解亞硝酸鹽實驗 83 4.2 紫外光降解亞硝酸鹽先導實驗 86 4.2.1 甲酸添加影響之實驗 86 4.2.2 紫外光波長影響之實驗 89 4.2.3 pH影響之實驗 95 4.2.4 緩衝溶劑影響之實驗 102 4.3 紫外光輔助鈀鋅雙金屬降解硝酸鹽實驗 103 4.3.1 鈀鋅雙金屬負載比例實驗 103 4.3.2 甲酸填加時間實驗 110 4.3.3 甲酸添加量實驗 125 4.3.4 材料使用量實驗 138 4.3.5 曝氣種類實驗 151 4.3.6 反應機制 158 第五章 結論與建議 162 5.1 結論 162 5.2 建議 164 參考文獻 165 附錄 179 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化碳陰離子自由基 | zh_TW |
| dc.subject | 鈀鋅雙金屬 | zh_TW |
| dc.subject | 硝酸鹽還原 | zh_TW |
| dc.subject | 紫外光 | zh_TW |
| dc.subject | 甲酸 | zh_TW |
| dc.subject | Formic acid | en |
| dc.subject | Pd/Zn Bimetallic | en |
| dc.subject | Carbon Dioxide Radical Anion | en |
| dc.subject | UV irradiation | en |
| dc.subject | Nitrate Reduction | en |
| dc.title | 選擇性光輔助雙金屬還原水中硝酸鹽為氮氣之研究 | zh_TW |
| dc.title | Selective Photoassisted Bimetallic Reduction of NO3− to N2 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施育仁(Yu-Jen Shih) | |
| dc.subject.keyword | 鈀鋅雙金屬,硝酸鹽還原,紫外光,甲酸,二氧化碳陰離子自由基, | zh_TW |
| dc.subject.keyword | Pd/Zn Bimetallic,Nitrate Reduction,Formic acid,UV irradiation,Carbon Dioxide Radical Anion, | en |
| dc.relation.page | 183 | |
| dc.identifier.doi | 10.6342/NTU202100222 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-02-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2701202121225000.pdf 未授權公開取用 | 6.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
