Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77240
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉如zh_TW
dc.contributor.advisorYu-Ju Chenen
dc.contributor.author翁紹娙zh_TW
dc.contributor.authorShao-Hsing Wengen
dc.date.accessioned2021-07-10T21:52:19Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424
2. Herbst, R. S., Heymach, J. V., and Lippman, S. M. (2008) Lung cancer. N Engl J Med 359, 1367-1380
3. Ettinger, D. S., Akerley, W., Bepler, G., Blum, M. G., Chang, A., Cheney, R. T., Chirieac, L. R., D'Amico, T. A., Demmy, T. L., Ganti, A. K., Govindan, R., Grannis, F. W., Jr., Jahan, T., Jahanzeb, M., Johnson, D. H., Kessinger, A., Komaki, R., Kong, F. M., Kris, M. G., Krug, L. M., Le, Q. T., Lennes, I. T., Martins, R., O'Malley, J., Osarogiagbon, R. U., Otterson, G. A., Patel, J. D., Pisters, K. M., Reckamp, K., Riely, G. J., Rohren, E., Simon, G. R., Swanson, S. J., Wood, D. E., Yang, S. C., and Members, N. N.-S. C. L. C. P. (2010) Non-small cell lung cancer. J Natl Compr Canc Netw 8, 740-801
4. Ettinger, D. (2013) Non–Small Cell Lung Cancer, Version 2.2013. Journal of the National Comprehensive Cancer Network 11, 6
5. Institute, N. C. (2018) SEER Cancer Statistics Review, 1975-2015.
6. Libermann, T. A., Nusbaum, H. R., Razon, N., Kris, R., Lax, I., Soreq, H., Whittle, N., Waterfield, M. D., Ullrich, A., and Schlessinger, J. (1985) Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 3, 161-172
7. Libermann, T. A., Razon, N., Bartal, A. D., Yarden, Y., Schlessinger, J., and Soreq, H. (1984) Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44, 753-760
8. Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., Lee, J., Yarden, Y., Libermann, T. A., Schlessinger, J., and et al. (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418-425
9. Weichselbaum, R. R., Dunphy, E. J., Beckett, M. A., Tybor, A. G., Moran, W. J., Goldman, M. E., Vokes, E. E., and Panje, W. R. (1989) Epidermal growth factor receptor gene amplification and expression in head and neck cancer cell lines. Head Neck 11, 437-442
10. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J., and Haber, D. A. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139
11. Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E., and Meyerson, M. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497-1500
12. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M., and Varmus, H. (2004) EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101, 13306-13311
13. Zhang, G. C., Lin, J. Y., Wang, Z., Zhou, Q., Xu, C. R., Zhu, J. Q., Wang, K., Yang, X. N., Chen, G., Yang, J. J., Huang, Y. J., Liao, R. Q., and Wu, Y. L. (2007) Epidermal growth factor receptor double activating mutations involving both exons 19 and 21 exist in Chinese non-small cell lung cancer patients. Clin Oncol (R Coll Radiol) 19, 499-506
14. Wells, A. (1999) EGF receptor. Int J Biochem Cell Biol 31, 637-643
15. Yarden, Y., and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127-137
16. Citri, A., and Yarden, Y. (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7, 505-516
17. Linardou, H., Dahabreh, I. J., Bafaloukos, D., Kosmidis, P., and Murray, S. (2009) Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol 6, 352-366
18. Yasuda, H., Kobayashi, S., and Costa, D. B. (2012) EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol 13, e23-31
19. Brambilla, E., and Gazdar, A. (2009) Pathogenesis of lung cancer signalling pathways: roadmap for therapies. Eur Respir J 33, 1485-1497
20. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P., Ward, C. W., and Burgess, A. W. (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284, 31-53
21. Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G., and Halmos, B. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New Engl J Med 352, 786-792
22. Kosaka, T., Yamaki, E., Mogi, A., and Kuwano, H. (2011) Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol 2011, 165214
23. Niederst, M. J., and Engelman, J. A. (2013) Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal 6, re6
24. Siegelin, M. D., and Borczuk, A. C. (2014) Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest 94, 129-137
25. Liu, Y., and Chance, M. R. (2014) Integrating phosphoproteomics in systems biology. Comput Struct Biotechnol J 10, 90-97
26. Yachie, N., Saito, R., Sugiyama, N., Tomita, M., and Ishihama, Y. (2011) Integrative features of the yeast phosphoproteome and protein-protein interaction map. PLoS Comput Biol 7, e1001064
27. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648
28. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J., and Comb, M. J. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190-1203
29. Linding, R., Jensen, L. J., Ostheimer, G. J., van Vugt, M. A., Jorgensen, C., Miron, I. M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J. G., Samson, L. D., Woodgett, J. R., Russell, R. B., Bork, P., Yaffe, M. B., and Pawson, T. (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415-1426
30. Newman, R. H., Hu, J., Rho, H. S., Xie, Z., Woodard, C., Neiswinger, J., Cooper, C., Shirley, M., Clark, H. M., Hu, S., Hwang, W., Jeong, J. S., Wu, G., Lin, J., Gao, X., Ni, Q., Goel, R., Xia, S., Ji, H., Dalby, K. N., Birnbaum, M. J., Cole, P. A., Knapp, S., Ryazanov, A. G., Zack, D. J., Blackshaw, S., Pawson, T., Gingras, A. C., Desiderio, S., Pandey, A., Turk, B. E., Zhang, J., Zhu, H., and Qian, J. (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9, 655
31. Tan, C. S., Bodenmiller, B., Pasculescu, A., Jovanovic, M., Hengartner, M. O., Jorgensen, C., Bader, G. D., Aebersold, R., Pawson, T., and Linding, R. (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2, ra39
32. Drake, J. M., Graham, N. A., Stoyanova, T., Sedghi, A., Goldstein, A. S., Cai, H., Smith, D. A., Zhang, H., Komisopoulou, E., Huang, J., Graeber, T. G., and Witte, O. N. (2012) Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proc Natl Acad Sci U S A 109, 1643-1648
33. Huttlin, E. L., Jedrychowski, M. P., Elias, J. E., Goswami, T., Rad, R., Beausoleil, S. A., Villen, J., Haas, W., Sowa, M. E., and Gygi, S. P. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-1189
34. Koivomagi, M., Ord, M., Iofik, A., Valk, E., Venta, R., Faustova, I., Kivi, R., Balog, E. R., Rubin, S. M., and Loog, M. (2013) Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 20, 1415-1424
35. Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., Ren, J., Xue, Y., and Zou, H. (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11, 1070-1083
36. Zhang, Y., Kweon, H. K., Shively, C., Kumar, A., and Andrews, P. C. (2013) Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 9, e1003077
37. Damle, N. P., and Mohanty, D. (2014) Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network. Bioinformatics 30, 1730-1738
38. Varjosalo, M., Keskitalo, S., Van Drogen, A., Nurkkala, H., Vichalkovski, A., Aebersold, R., and Gstaiger, M. (2013) The protein interaction landscape of the human CMGC kinase group. Cell Rep 3, 1306-1320
39. Yue, X.-S., and Hummon, A. B. (2012) Mass spectrometry-based phosphoproteomics in cancer research. Frontiers in Biology 7, 566-586
40. Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D., and Comb, M. J. (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A 105, 692-697
41. Harsha, H. C., and Pandey, A. (2010) Phosphoproteomics in cancer. Mol Oncol 4, 482-495
42. Tsai, C. F., Wang, Y. T., Chen, Y. R., Lai, C. Y., Lin, P. Y., Pan, K. T., Chen, J. Y., Khoo, K. H., and Chen, Y. J. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-4069
43. Vizcaino, J. A., Cote, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., Griss, J., Alpi, E., Birim, M., Contell, J., O'Kelly, G., Schoenegger, A., Ovelleiro, D., Perez-Riverol, Y., Reisinger, F., Rios, D., Wang, R., and Hermjakob, H. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41, D1063-1069
44. Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-57
45. Supek, F., Bosnjak, M., Skunca, N., and Smuc, T. (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800
46. Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., and Ma'ayan, A. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128
47. Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., and Ma'ayan, A. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90-97
48. Bindea, G., Galon, J., and Mlecnik, B. (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661-663
49. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z., and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093
50. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C., and Janne, P. A. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043
51. Wang, Q., and Greene, M. I. (2008) Mechanisms of resistance to ErbB-targeted cancer therapeutics. J Clin Invest 118, 2389-2392
52. Huang, M. H., Lee, J. H., Chang, Y. J., Tsai, H. H., Lin, Y. L., Lin, A. M., and Yang, J. C. (2013) MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol Oncol 7, 112-120
53. Greulich, H., Chen, T. H., Feng, W., Janne, P. A., Alvarez, J. V., Zappaterra, M., Bulmer, S. E., Frank, D. A., Hahn, W. C., Sellers, W. R., and Meyerson, M. (2005) Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2, e313
54. Wang, Y. T., Pan, S. H., Tsai, C. F., Kuo, T. C., Hsu, Y. L., Yen, H. Y., Choong, W. K., Wu, H. Y., Liao, Y. C., Hong, T. M., Sung, T. Y., Yang, P. C., and Chen, Y. J. (2017) Phosphoproteomics Reveals HMGA1, a CK2 Substrate, as a Drug-Resistant Target in Non-Small Cell Lung Cancer. Sci Rep 7, 44021
55. Sordella, R., Bell, D. W., Haber, D. A., and Settleman, J. (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163-1167
56. Sorkin, A., and Goh, L. K. (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315, 683-696
57. Futschik, M. E., and Carlisle, B. (2005) Noise-robust soft clustering of gene expression time-course data. Journal of bioinformatics and computational biology 3, 965-988
58. Wu, D. W., Wu, T. C., Wu, J. Y., Cheng, Y. W., Chen, Y. C., Lee, M. C., Chen, C. Y., and Lee, H. (2014) Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene 33, 4385-4395
59. Makinoshima, H., Takita, M., Matsumoto, S., Yagishita, A., Owada, S., Esumi, H., and Tsuchihara, K. (2014) Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J Biol Chem 289, 20813-20823
60. Shin, S., Wolgamott, L., Roux, P. P., and Yoon, S. O. (2014) Casein kinase 1epsilon promotes cell proliferation by regulating mRNA translation. Cancer Res 74, 201-211
61. Li, Y., Fan, S., Koo, J., Yue, P., Chen, Z. G., Owonikoko, T. K., Ramalingam, S. S., Khuri, F. R., and Sun, S. Y. (2012) Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer. Cancer Biol Ther 13, 272-280
62. Miller, M. L., Jensen, L. J., Diella, F., Jorgensen, C., Tinti, M., Li, L., Hsiung, M., Parker, S. A., Bordeaux, J., Sicheritz-Ponten, T., Olhovsky, M., Pasculescu, A., Alexander, J., Knapp, S., Blom, N., Bork, P., Li, S., Cesareni, G., Pawson, T., Turk, B. E., Yaffe, M. B., Brunak, S., and Linding, R. (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1, ra2
63. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., and Mering, C. V. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47, D607-d613
64. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D., and Apweiler, R. (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32, D452-455
65. Huang, T., Kim, C. K., Alvarez, A. A., Pangeni, R. P., Wan, X., Song, X., Shi, T., Yang, Y., Sastry, N., Horbinski, C. M., Lu, S., Stupp, R., Kessler, J. A., Nishikawa, R., Nakano, I., Sulman, E. P., Lu, X., James, C. D., Yin, X. M., Hu, B., and Cheng, S. Y. (2017) MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell 32, 840-855.e848
66. Huang, F., Chen, J., Wang, Z., Lan, R., Fu, L., and Zhang, L. (2018) delta-Catenin promotes tumorigenesis and metastasis of lung adenocarcinoma. Oncol Rep 39, 809-817
67. Diepenbruck, M., Waldmeier, L., Ivanek, R., Berninger, P., Arnold, P., van Nimwegen, E., and Christofori, G. (2014) Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 127, 1523-1536
68. Kim, Y. J., Sertamo, K., Pierrard, M. A., Mesmin, C., Kim, S. Y., Schlesser, M., Berchem, G., and Domon, B. (2015) Verification of the biomarker candidates for non-small-cell lung cancer using a targeted proteomics approach. J Proteome Res 14, 1412-1419
69. Mise, N., Savai, R., Yu, H., Schwarz, J., Kaminski, N., and Eickelberg, O. (2012) Zyxin is a transforming growth factor-beta (TGF-beta)/Smad3 target gene that regulates lung cancer cell motility via integrin alpha5beta1. J Biol Chem 287, 31393-31405
70. Li, X., Ling, N., Bai, Y., Dong, W., Hui, G. Z., Liu, D., Zhao, J., and Hu, J. (2013) MiR-16-1 plays a role in reducing migration and invasion of glioma cells. Anat Rec (Hoboken) 296, 427-432
71. Call, G. S., Chung, J. Y., Davis, J. A., Price, B. D., Primavera, T. S., Thomson, N. C., Wagner, M. V., and Hansen, M. D. (2011) Zyxin phosphorylation at serine 142 modulates the zyxin head-tail interaction to alter cell-cell adhesion. Biochem Biophys Res Commun 404, 780-784
72. Kotb, A., Hyndman, M. E., and Patel, T. R. (2018) The role of zyxin in regulation of malignancies. Heliyon 4, e00695
73. Liu, P., Cheng, H., Roberts, T. M., and Zhao, J. J. (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nature reviews. Drug discovery 8, 627-644
74. Nyati, S., Schinske, K., Ray, D., Nyati, M. K., Ross, B. D., and Rehemtulla, A. (2011) Molecular imaging of TGFbeta-induced Smad2/3 phosphorylation reveals a role for receptor tyrosine kinases in modulating TGFbeta signaling. Clin Cancer Res 17, 7424-7439
75. Serizawa, M., Takahashi, T., Yamamoto, N., and Koh, Y. (2013) Combined treatment with erlotinib and a transforming growth factor-beta type I receptor inhibitor effectively suppresses the enhanced motility of erlotinib-resistant non-small-cell lung cancer cells. J Thorac Oncol 8, 259-269
76. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674
77. Sawyers, C. L. (2009) Shifting paradigms: the seeds of oncogene addiction. Nat Med 15, 1158-1161
78. Hainaut, P., and Plymoth, A. (2013) Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 25, 50-51
79. Serra, V., Markman, B., Scaltriti, M., Eichhorn, P. J., Valero, V., Guzman, M., Botero, M. L., Llonch, E., Atzori, F., Di Cosimo, S., Maira, M., Garcia-Echeverria, C., Parra, J. L., Arribas, J., and Baselga, J. (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68, 8022-8030
80. Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., Nishiwaki, Y., Ohe, Y., Yang, J. J., Chewaskulyong, B., Jiang, H., Duffield, E. L., Watkins, C. L., Armour, A. A., and Fukuoka, M. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361, 947-957
81. Brose, M. S., Volpe, P., Feldman, M., Kumar, M., Rishi, I., Gerrero, R., Einhorn, E., Herlyn, M., Minna, J., Nicholson, A., Roth, J. A., Albelda, S. M., Davies, H., Cox, C., Brignell, G., Stephens, P., Futreal, P. A., Wooster, R., Stratton, M. R., and Weber, B. L. (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62, 6997-7000
82. Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., Grunwald, V., Thompson, J. A., Figlin, R. A., Hollaender, N., Urbanowitz, G., Berg, W. J., Kay, A., Lebwohl, D., and Ravaud, A. (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449-456
83. Asghar, U., Witkiewicz, A. K., Turner, N. C., and Knudsen, E. S. (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature reviews. Drug discovery 14, 130-146
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77240-
dc.description.abstract表皮生長因子接受器-酪胺酸激酶抑制劑 (EGFR-TKIs) 已被證實作為EGFR突變的晚期非小細胞肺癌(NSCLC)患者的標靶治療的成功實例之一。舉例來說,吉非替尼(艾瑞莎)作為肺癌第一線用藥,對於EGFR的酪胺酸區域突變(19外顯子的缺失突變及21外顯子的L858R點突變)的患者,具有良好的療效。然而,這些使用艾瑞莎治療的患者終將會產生抗藥性以及腫瘤的復發;目前對發生EGFR-TKI主要的抗藥性機制有兩種說法,其一為EGFR在20外顯子出現了T790M 突變,此突變的產生干擾了TKI與EGFR的kinase domain之間的相互作用。另外一種抗藥機制則是,可能其他受體酪氨酸激酶(RTK)失調或下游分子的異常活化,或是其他逃脫TKI的訊息傳遞路徑的活化,其機制仍有待發掘。找到造成抗藥性的因子,有助我們進一步了解細胞產生抗藥性的調節機制,並且促使合併試劑的開發,希望能克服肺癌對於TKI產生的抗藥性並提供更好的療效。
磷酸化蛋白質體學已成熟成為一有利的工具,能夠系統性地揭示細胞中蛋白質的特定位點磷酸化改變。因此,為了研究在抗藥性細胞中獲得抗藥性的細胞調節機制,我們使用具藥物敏感性的PC9細胞和抗藥的PC9/gef細胞作為研究的模型。在本研究中,利用同重元素相對與絕對定量標定法(iTRAQ8)結合固定化鐵離子親合層析技術的磷酸化蛋白質體學定量分析策略,比較這兩株細胞分別以低劑量(0.03 µM)或高劑量(10µM)艾瑞莎刺激後的蛋白質磷酸化反應,並針對加藥後一天和三天進行分析。推測此方法可以藉著區分此兩株細胞之間不同的磷酸化表現量,鑑別出由其他激酶驅動的下游細胞訊息傳遞,但也可能鑑別出由TKI激活或未被TKI改變的蛋白質或途徑,希望找尋在抗藥性細胞裡,造成細胞對於艾瑞莎產生抗性的異常調節機制。在磷酸化蛋白質體學結果中,2509個蛋白中有3850條磷酸化胜肽被鑑定及定量。接著,將此複雜的蛋白質磷酸化定量結果進行叢集分析,將對艾瑞莎反應的變化分類出兩個變化趨勢。我們假設,在PC9艾瑞莎低劑量處理後蛋白質磷酸化沒有表現或表現被抑制,以及在PC9/gef要同時在低劑量以及高劑量加藥的條件下隨著天數,蛋白質磷酸化的表現量上升或是不變,即是可能造成抗藥性的關鍵蛋白。第一階段我們篩選出104條磷酸化胜肽(95蛋白質)作為抗藥性標靶。進一步將這些蛋白質以Ingenuity Pathway分析(IPA)知識數據庫以及DAVID進行功能分類GO (Gene Ontology),利用生物資訊解析可能的異常調節網絡,並找出具有抗藥性潛力的蛋白質(ZYX、EIF4BP1、ATG4B、CTNND1、SRF2)。其中,已經有文獻指出EIF4BP1與肺癌抗藥性相關。除此之外,IPA與蛋白質的特定序列特徵資訊 (motif)分析結果預測TGFBR1與CK2可能為參與調控抗藥機制的上游調節因子。這個網絡也顯示ZYX可能受AKT、TGFBR1、CK2所調控,綜合上述推論,ZYX可能是造成PC9/gef抗藥性的關鍵蛋白。因此,我們更進一步驗證ZYX 絲氨酸(142和143) 磷酸化於EGFR-TKI的作用。在後續的生化實驗中證明了ZYX的磷酸化為TGFB1和AKT所調控,而且同時加入艾瑞莎更加抑制PC9/gef細胞生長及細胞遷移能力。將鑑定到的ZYX磷酸化胜肽進行motif分析後,結果預測酪蛋白激酶(CK2)為可能的激酶,PC9/gef細胞處理CK2抑制劑 ( CX-4945 )後,降低了ZYX 絲氨酸(142和143) 磷酸化表現量,與艾瑞莎合併處理亦降低PC9/gef細胞生長。雖然這三種藥物合併艾瑞莎的細胞實驗結果顯示,藥物合併治療可以進一步減少細胞生長,但卻不增加抗藥性細胞對於艾瑞莎的敏感度。因此,藉由轉染小分子干擾核糖核酸 (small interfering RNA, siRNA),並與艾瑞莎協同使用,此實驗結果顯示降低ZYX 蛋白質的表現量可以增加艾瑞莎對於PC9/gef細胞的生長抑制能力。最後,透過將帶有ZYX點突變 ( S142/3A ) 質體在抗藥性細胞裡大量表現無法磷酸化的ZYX 蛋白,合併處理艾瑞莎後的實驗結果顯示,將此磷酸化位點突變後,可以增加艾瑞莎在抗藥性細胞中的療效。綜上所述,本研究透過系統性的磷酸化蛋白質體學分析,揭示非小細胞肺癌中與EGFR-TKI誘導的抗藥性相關的磷酸化蛋白體變化,且證明了TGFBR1、AKT、CK2調控了ZYX的磷酸化,協同造成抗藥細胞對於艾瑞莎的抗藥性,也證實ZYX為TKI抗藥性標靶。在非小細胞肺癌上的直接應用可提供更好肺癌診斷和治療之新方向。
zh_TW
dc.description.abstractEpidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been demonstrated as successful example of targeted therapy for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. For example, Gefitinib (Iressa®) is an effective first-line treatment for NSCLC patients with EGFR exon 19 deletions (del19) and exon 21 substitution (L858R) mutations. However, gefitinib-treated patients eventually develop acquired resistance and recurrence with mechanisms yet to be discovered. Two mechanisms have been reported to involve in the resistant process, including acquired secondary mutation (T790M) in the exon 20 of EGFR to interrupt its interaction with TKIs The other has been proposed to be EGFR-independent manner due to dysregulation of other receptor tyrosine kinase or downstream molecules bypassing signaling activations. The discovery of resistance-related factors may advance our understanding for the underlying mechanism of resistance of EGFR-TKIs and to facilitate the design of a companion agents to overcome the resistance for better therapy efficacy.
Advancement in phosphoproteomics has offered a powerful tool to reveal the system view of site-specific phosphorylation and their alterations in cellular proteome. To investigate the cellular regulatory mechanism contributing to the gefitinib acquired resistance in NSCLC, we use the TKI-sensitive PC9 cells and TKI-resistant PC9/gef cells as a cell model to quantitatively compare their dynamic phosphoproteomic alteration in response to Gefitinib. We performed an isobaric tags for relative and absolute quantitation (iTRAQ) labeling approach combined with Immobilized Metal Affinity Chromatography (IMAC) for phosphopeptides enrichment to quantitatively compare PC9 and PC9/gef, cells in response to gefitinib stimulation in dosage-dependent (0.03µM in both PC9 and PC9/gef, 10µM in PC9/gef) effects after 1 and 3 days. We hypothesized that this approach would identify the TKI-responsive signaling as well as downstream signaling events driven by other kinase that may potentially contribute to the drug resistance. The phosphoproteomics results identified and quantified a total of 3851 phosphopeptides from 2509 proteins. The time- and dose-dependent phosphoproteomic changes are further clustered into two dynamic trends in low-dose and high-dose treatment. Upon Gefitinib treatment, 104 phosphopeptides (95 phosphoproteins) were down-regulated upon low-dose gefitinib treatment in PC9 cells, whereas they were up-regulated in PC9/gef cells, which may be our hypothetical new drug-resistant targets.
Based on functional annotation and pathway enrichment analysis, we systematically reconstructed an integrative network of these 104 phosphoproteins using DAVID and IPA database to identify potential candidate targets of TKI-resistance. The network potentially underlying the gefitinib perturbation phosphoproteome indicated that ZYX, EIF4EBP1, ATG4B, CTNND1, SRF2 may be related to drug resistance. Among them, EIF4EBP1 has been reported to confer EGFR TKI resistance in lung cancer. Moreover, IPA and motif analysis suggested that TGFBR1 and CK2 are the predicted major upstream regulators. The network also illustrated that ZYX may be regulated by AKT, TGFβR1 and CK2, as a critical node contributing to EGFR-TKI resistance in PC9/gef cells. We further validate the roles of ZYX and its phosphorylation site Serine 142 and 143 in EGFR-TKI resistance. Inhibition of TGFBR1 and AKT both reduced the Ser142/143 phosphorylation of ZYX and combined treatment with gefitinib decreased cell viability, and cell migration activity in PC9/gef cells. The motif analysis for the phosphopeptides of ZYX predicted that casein kinase 2 (CK2) is a putative kinase. Treatment of CK2 inhibitor (CX-4945) reduced Ser142/143 phosphorylation of ZYX, and combined treatment with gefitinib decreased cell viability in PC9/gef cells. The potential role of AKT, TGFBR1, and CK2 in recovery from EGFR-TKI resistance are excluded based on the result that their inhibition reduced cell growth but did not enhance the sensitivity of gefitinib. Furthermore, knocking down ZYX expression by transfection with small interfering RNA of ZYX enhanced the cytotoxicity and cell growth inhibition of gefitinib in PC9/gef cells. Finally, site-directed mutagenesis of ZYX Ser142/143 reinforced the efficacy of gefitinib in resistant NSCLC cells, suggesting the promising role of site-specific phosphorylation on ZYX to recover the EGFR-TKI sensitivity. In summary, our result suggests TGFβR1-ZYX, AKT-ZYX, and CK2-ZYX signaling axis that as a collaborative network regulated PC9/gef cells resistance to gefitinib. This study may shed light on the gefitinib-resistant mechanisms through systematic phosphoproteomic analysis and provide a novel landscape for improving therapeutic efficacy by combinational treatment in NSCLC.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:52:19Z (GMT). No. of bitstreams: 1
ntu-108-D01b48007-1.pdf: 2552595 bytes, checksum: 7591a63be45a1b52c423c6522175876b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract V
List of Figure X
CHAPTER 1 Introduction 1
1.1 Current Status of Lung cancer 1
1.2 EGFR-mutated Asian patients and TKI targeted therapy in lung cancer 1
1.3 Lung cancer target therapy and resistance to TKI 2
1.4 Phosphoproteomic and cancer research 3
1.5 Objective 4
CHAPTER 2 Martial and Method 6
2.1 Chemicals and material 6
2.2 Cell line and cell culture 6
2.3 Cell lysate extraction from NSCLC cells 6
2.4 Transfection Small interfering RNA (si-RNA) 7
2.5 Plasmid Constructs, Transient Transfection and Stable expression cell lines 7
2.6 Cell viability assay 8
2.7 Western blot 8
2.8 Trans-well migration assay 8
2.9 Protein digestion and isobaric labeling 9
2.10 Tip-based pH/acid controlled IMAC Procedure 9
2.11 LC-MS/MS analysis 10
2.12 Protein quantitation and statistical analysis 10
2.13 Gene Ontology and Pathway/Network enrichment analysis 11
CHAPTER 3 12
3.1 Sensitivity and resistance in PC9 and PC9/gef NSCLC cells 12
3.2 Quantitative phosphoproteomic profiling of gefitinib-sensitive and -resistant NSCLC cell lines 13
3.3 Identification of potential drug-resistant candidates and upstream kinases 18
3.5 Identification of upstream regulator of ZYX phosphorylation in PC9/gef cells 22
3.6 Knockdown of ZYX protein enhances enhanced the cytotoxic effect of gefitinibb-treated PC9/gef cells. 24
3.7 Phosphorylation of ZYX protein at S143 regulate NSCLC cells resistance to gefitinib treatment. 25
CHEPTER 4 Discussion and Conclusion 27
CHEPTER 5 Reference 29
Figure 35
-
dc.language.isoen-
dc.subject非小細胞肺癌zh_TW
dc.subject磷酸化蛋白質體學zh_TW
dc.subject上皮生長因子受體酪氨酸激?抑製劑抗藥性zh_TW
dc.subjectZYXzh_TW
dc.subjectNSCLCen
dc.subjectphosphoproteomicsen
dc.subjectEGFR-TKI resistanceen
dc.subjectZYXen
dc.title利用磷酸化蛋白質體學探勘非小細胞肺癌之抗藥性標的zh_TW
dc.titleMining drug resistant targets from non-small cell lung cancer by phosphoproteomicsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊泮池;俞松良;潘思樺;韓嘉莉zh_TW
dc.contributor.oralexamcommitteePan-Chyr Yang;Sung-Liang Yu;Szu-Hua Pan;Chia-Li Hanen
dc.subject.keyword非小細胞肺癌,磷酸化蛋白質體學,上皮生長因子受體酪氨酸激?抑製劑抗藥性,ZYX,zh_TW
dc.subject.keywordNSCLC,phosphoproteomics,EGFR-TKI resistance,ZYX,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU201902276-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved