請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77236完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 忻凌偉 | |
| dc.contributor.author | Yen-Ju Ting | en |
| dc.contributor.author | 丁彥如 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:52:10Z | - |
| dc.date.available | 2021-07-10T21:52:10Z | - |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | 1. Missale, C., et al. Dopamine receptors: from structure to function. Physiol. Rev. 1998, 78, 189-225.
2. Chinta, S. J., et al. Dopaminergic neurons. Int. J. Biochem. Cell Biol. 2005, 37, 942-946. 3. Chen, N., et al. Structure and function of the dopamine transporter. Eur. J. Pharmacol. 2000, 405, 329-339. 4. Nelson, N., The family of Na+/Cl− neurotransmitter transporters. J. Neurochem. 1998, 71,1785-1803. 5. Self, D. W., et al. Molecular mechanisms of drug reinforcement and addiction. Annual review of neuroscience. 1995, 18, 463-495. 6. Filip, M., et al. The serotonergic system and its role in cocaine addiction. Pharmacol. Rep. 2005, 57, 685-700. 7. Rocha, B. A. Stimulant and reinforcing effects of cocaine in monoamine transporter knockout mice. Eur. J. pharmacol. 2003, 479, 107-115. 8. Innis, R. B., et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. P. N. A. S. 1993, 90, 11965-11969. 9. Laakso, A., et al. Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia. Schizophr. Res. 2001, 52, 115-120. 10. Marshall, V., et al. Role of dopamine transporter imaging in routine clinical practice. Mov. Disord. 2003, 18,1415-1423. 11. Cummings, J. L., et al. The role of dopaminergic imaging in patients with symptoms of dopaminergic system neurodegeneration. Brain. 2011, 134, 3146-3166. 12. Pimlott, S. L., et al. Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 2011, 40 149-162. 13. Cai, L., et al. Chemistry with [18F] fluoride ion. Eur. J. Org. Chem. 2008, 2008, 2853-2873. 14. Varrone, A., et al. Molecular imaging of the dopamine transporter. J. Nucl. Med. 2010, 51, 1331-1334. 15. Chalon, S., et al. The story of the dopamine transporter PET tracer [18F] LBT-999: from conception to clinical use. Front. Med. 2019, 6, 90. 16. Runyon, S. P., et al. Dopamine transporter ligands: recent developments and therapeutic potential. Curr. Top. Med. Chem. 2006, 6, 1825-1843. 17. Van der zee, P., et al. Aryl 1, 4‐dialk (en) ylpiperazines as selective and very potent inhibitors of dopamine uptake. Chem. Inform. 1981, 12. 18. Choe, C. S. Synthesis and biological activity of pyridyl-substituted 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine derivatives. 國立臺灣大學醫學院藥學研究所碩士論文. 2016. 19. Yusubov, M. S., et al. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. ARKIVOC: Online Journal of Organic Chemistry. 2013. 20. Merritt, E. A., et al. Diaryliodonium salts: a journey from obscurity to fame. Angew. Chem. Int. Ed. 2009, 48, 9052-9070. 21. Engstrom K., et al. Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB. Tetrahedron. 2012, 68, 7613-7618. 22. Chun, J. H., et al. Regiospecific syntheses of functionalized diaryliodonium tosylates via [hydroxy (tosyloxy) iodo] arenes generated in situ from (diacetoxyiodo) arenes. J. Org. Chem. 2012, 77, 1931-1938. 23. Boess, F. G., et al. Molecular biology of 5-HT receptors. Neuropharmacol. 1994, 33, 275-317. 24. Hoyer, D., et al. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002, 71, 533-554. 25. Blattner, K. M., et al. Pharmacology and Therapeutic Potential of the 5-HT7 receptor. ACS Chem. Neurosci. 2018, 10, 89-119. 26. Maria, N. M., et al. Structure–Activity Relationships and Therapeutic Potentials of 5-HT7 Receptor Ligands: An Update. J. Med. Chem. 2018, 61, 8475-8503. 27. KU, H. C., et al. Thaliporphine, an alkaloid from Neolitsea konishii, exerts antioxidant, anti-inflammatory, and anti-apoptotic responses in guinea pig during cardiovascular collapse in inflammatory disease. J. Funct. Foods. 2016, 26, 57-64. 28. Kapadia N., et al. Aporphine alkaloids as ligands for serotonin receptors. Med. Chem. (Los Angeles). 2016, 6, 241-249. 29. Lee. C. H. Synthetic Study of Novel Tetrahydroisoquinolines. 國立臺灣大學醫學院藥學研究所碩士論文. 2017. 30. Wang, Y. J. Synthesis of 8-phenylisoquinolines as potential positron emission tomography imaging agents for 5-HT7 receptor. 國立臺灣大學醫學院藥學研究所碩士論文. 2013. 31. Taratula, O., et al. Shorter synthesis of trifunctionalized cryptophane-A derivatives. Org. Lett. 2011, 13, 1414-1417. 32. Fumeaux, R., et al. First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org. Biomol. Chem. 2010, 8, 5199-5211. 33. National Center for Biotechnology Information. PubChem Database. CID=63386770, Available at https://pubchem.ncbi.nlm.nih.gov/compound/1-_2-Chloroethyl_-4-_3-phenylpropyl_piperazine (accessed on July 24, 2019) 34. Schneider, T., et al. Synthesis of a Photo‐Caged DOPA Derivative by Selective Alkylation of 3, 4‐Dihydroxybenzaldehyde. Eur. J. Org. Chemi. 2018, 2018, 2053-2063. 35. Aziz, J., et al. Direct Alkynylation of 3 H-Imidazo [4, 5-b] pyridines Using gem-Dibromoalkenes as Alkynes Source. J. Org. Chem. 2016, 81, 4122-4133. 36. Bao, X. Z., et al. Developing glutathione-activated catechol-type diphenylpolyenes as small molecule-based and mitochondria-targeted prooxidative anticancer theranostic prodrugs. Free Radical Biol. Med. 2019, 134, 406-418. 37. National Center for Biotechnology Information. PubChem Database. CID=89232007, Available at https://pubchem.ncbi.nlm.nih.gov/compound/89232007 (accessed on July 24, 2019) 38. Voigt, T., et al. A natural product inspired tetrahydropyran collection yields mitosis modulators that synergistically target CSE1L and tubulin. Angew. Chem. Int. Ed. 2013, 52, 410-414. 39. Sekine, Y., et al. Mammalian Alkaloids: O‐Methylation of (±)‐Norcoclaurine‐1‐carboxylic Acid and Related Isoquinolines Including (S)‐and (R)‐Norcoclaurine with 14C‐Labeled S‐Adenosyl‐L‐Methionine in Presence of Mammalian Catechol O‐Methyltransferase. Helv. Chim. Acta. 1990, 73, 426-432. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77236 | - |
| dc.description.abstract | 多巴胺轉運體主要之生理功能為回收突觸間的多巴胺,且與許多中樞神經疾病有關,例如:帕金森氏症、思覺失調症、注意力不足過動症、藥物濫用與抑鬱症。正子斷層掃描是一種非侵入性之技術,可協助這些疾病的早期診斷及追蹤,也可協助新藥開發。先前本實驗室發展出對多巴胺轉運體具有高度的結合力、選擇性和適當脂溶性的2-吡啶基取代之GBR12935衍生物。為合成以 [18F] 標定的化合物1應用於正子斷層掃描,必須設計出穩定且易於進行18F標定反應之前驅物,我們選擇具有缺電子和良好離去基團性質的不對稱雙芳香環碘鹽作為氟原子進行親核性芳香環取代反應的前驅物。本研究以前驅物2作為合成目標,探討關鍵中間體有機錫化合物3的合成,以建立一條合成路徑。先以格林納反應合成具溴取代的雙芳香環醇6,與化合物7經偶合反應與錫化反應後成功製備關鍵中間體化合物3,未來可以前驅物2進行18F標定反應,以探討其成為多巴胺轉運體分子探針之可能性。
血清素受體在人體中扮演重要的角色,且與多種中樞神經系統之生理功能有所關聯,例如:體溫調節、學習與記憶、焦慮以及精神分裂症等。這也意味著血清素受體為重要的藥物分子作用標靶。為發展一系列對於不同血清素受體亞型具有高親和力與選擇性之新穎化合物。延續本實驗室過去之研究成果,以8-苯基四氫異喹啉 (8-phenyl-1,2,3,4-tetrahydroisoquinoline) 作為核心結構,利用環烷氧基團與氟代烷氧基團取代C-6上酚基以合成新穎衍生物16a-b。未來可於C-8上進行不同芳香基團之修飾,以評估其作為新穎血清素受體配體之可能性。 | zh_TW |
| dc.description.abstract | Dopamine transporter (DAT) is responsible for reuptake of dopamine from the synaptic cleft and involved in many neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, attention deficit hyperactivity disorder, substance abuse and depression. Position emission tomography (PET) is a non-invasive molecular imaging technique, which can be used for early diagnosis and disease monitoring, and also for new drug discovery and development. Previously, a potent and selective dopamine transporter ligand, compound 1, with suitable lipophilicity was discovered by using GBR12935 as the lead compound. To synthesize [18F]-1 as a positron emission tomography molecular probe for DAT, it is necessary to design and synthesize a suitable precursor for 18F-labeling reaction. Diaryliodonium salt with electron-deficient and good leaving group properties for proceeding nucleophilic aromatic substitution with fluoride was designed as precursor. In this study, diaryliodonium salt precursor 2 of [18F]-1 was chosen as target compound, and the synthesis of key intermediate aryl-stannane 3 was explored to establish a synthetic pathway. Bromo-substituted alcohol 6 was synthesized by Grignard reaction, through coupling reaction with compound 7 and stannylation for the preparation of key intermediate aryl-stannane 3. Precursor 2 will be used for 18F-labeling reaction for the discovery of novel PET molecular probe for DAT.
Serotonin (5-HT) receptors play important roles in the human body and are related to various physiological functions of central nervous system, such as thermoregulation, learning and memory, anxiety, and schizophrenia. The 5-HT receptors are important drug targets to explore the etiology and pathophysiology of related diseases. As continuous efforts, to develop a series of novel compounds with high affinity and selectivity for the 5-HT receptor subtypes. 8-Phenyl-tetrahydroisoquinoline was chosen as the core structure, and the intermediates 16a-b with cyclopropylmethoxy and fluoroalkoxy-substituted on C-6 were prepared as target compounds. Further modification of aromatic groups on C-8 could provide novel derivatives as potential ligands for 5-HT receptors. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:10Z (GMT). No. of bitstreams: 1 ntu-108-R06423003-1.pdf: 5808540 bytes, checksum: e923717b4938996e98ae2e321a831f6b (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III ABSTRACT IV 英文縮寫列表 VI 總目錄 VII 圖目錄 IX 表目錄 IX 路徑目錄 IX 第一部分:新穎多巴胺轉運體分子探針之設計與合成 1 第一章、緒論 2 1.1 多巴胺之研究 2 1.2 多巴胺轉運體之研究 3 1.3 正子斷層掃描之原理與其於多巴胺轉運體之應用 4 1.4 化合物的結構設計 6 1.5 研究目的與動機 7 第二章、結果與討論 9 2.1 合成以18F標定的吡啶基取代GBR12935衍生物之前驅物 9 2.1.1 逆合成分析 9 2.1.2 化合物6、7、5之合成研究 10 2.1.3 關鍵中間體3、HTIA中間體4與前驅物2之合成研究 14 第三章、結論 16 第二部分:6-烷氧基四氫異喹啉衍生物之合成 17 第一章、緒論 18 1.1 血清素之研究 18 1.2 血清素受體之研究 19 1.3 化合物結構設計 21 1.4 研究動機與目的 23 第二章、結果與討論 24 2.1 6-烷氧基四氫異喹啉之合成 24 2.1.1 逆合成分析 24 2.1.2 保護基之研究與化合物25合成分析 25 2.1.3 共同中間體20與目標產物16a-b之合成分析 28 第三章、結論 30 實驗部分 31 一、實驗藥品及溶劑來源 31 二、自製無水溶劑 33 三、一般儀器與方法 34 四、合成步驟與分析 36 參考文獻 63 附表目錄 67 附圖目錄 67 附表 70 附圖 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 四氫異?? | zh_TW |
| dc.subject | 多巴胺轉運體 | zh_TW |
| dc.subject | 分子探針 | zh_TW |
| dc.subject | 正子斷層掃描 | zh_TW |
| dc.subject | 氟-18標定 | zh_TW |
| dc.subject | 血清素受體 | zh_TW |
| dc.subject | F-18 labeling | en |
| dc.subject | tetrahydroisoquinoline | en |
| dc.subject | serotonin receptors | en |
| dc.subject | Dopamine transporter | en |
| dc.subject | molecular probe | en |
| dc.subject | positron emission tomography | en |
| dc.title | 第一部分:新穎多巴胺轉運體分子探針之設計與合成
第二部分:6-烷氧基四氫異喹啉衍生物之合成 | zh_TW |
| dc.title | Part I: Design and synthesis of novel dopamine transporter molecular probes
Part II: Synthesis of 6-alkoxy tetrahydroisoquinolines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李水盛,林美香 | |
| dc.subject.keyword | 多巴胺轉運體,分子探針,正子斷層掃描,氟-18標定,血清素受體,四氫異??, | zh_TW |
| dc.subject.keyword | Dopamine transporter,molecular probe,positron emission tomography,F-18 labeling,serotonin receptors,tetrahydroisoquinoline, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201903556 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06423003-1.pdf 未授權公開取用 | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
