請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77235完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江皓森 | zh_TW |
| dc.contributor.advisor | Hao-Sen Chiang | en |
| dc.contributor.author | 彭裕淳 | zh_TW |
| dc.contributor.author | Yu-Chun Peng | en |
| dc.date.accessioned | 2021-07-10T21:52:07Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Artis, D., Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol, 2008. 8(6): p. 411-20.
2. Garrett, W.S., J.I. Gordon, and L.H. Glimcher, Homeostasis and inflammation in the intestine. Cell, 2010. 140(6): p. 859-70. 3. Maloy, K.J. and F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 2011. 474(7351): p. 298-306. 4. Qin, X., et al., Hydrophobicity of mucosal surface and its relationship to gut barrier function. Shock, 2008. 29(3): p. 372-6. 5. Cani, P.D., Human gut microbiome: hopes, threats and promises. Gut, 2018. 67(9): p. 1716-1725. 6. Brandtzaeg, P., Molecular and cellular aspects of the secretory immunoglobulin system. APMIS, 1995. 103(1): p. 1-19. 7. Bevins, C.L. and N.H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011. 9(5): p. 356-68. 8. van der Flier, L.G. and H. Clevers, Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol, 2009. 71: p. 241-60. 9. Howitt, M.R., et al., Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 2016. 351(6279): p. 1329-33. 10. Nadjsombati, M.S., et al., Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity, 2018. 49(1): p. 33-41 e7. 11. Marshman, E., C. Booth, and C.S. Potten, The intestinal epithelial stem cell. Bioessays, 2002. 24(1): p. 91-8. 12. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-7. 13. Macdonald, T.T. and G. Monteleone, Immunity, inflammation, and allergy in the gut. Science, 2005. 307(5717): p. 1920-5. 14. Otte, J.M., E. Cario, and D.K. Podolsky, Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 2004. 126(4): p. 1054-70. 15. Viala, J., et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol, 2004. 5(11): p. 1166-74. 16. Hirata, Y., et al., Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. J Immunol, 2007. 179(8): p. 5425-32. 17. Zeuthen, L.H., L.N. Fink, and H. Frokiaer, Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology, 2008. 123(2): p. 197-208. 18. Zaph, C., et al., Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med, 2008. 205(10): p. 2191-8. 19. Xu, W., et al., Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol, 2007. 8(3): p. 294-303. 20. Strober, W., The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity, 2009. 31(3): p. 377-88. 21. Bilate, A.M. and J.J. Lafaille, Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol, 2012. 30: p. 733-58. 22. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 2010. 11(5): p. 373-84. 23. Gay, N.J., et al., Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol, 2014. 14(8): p. 546-58. 24. Loo, Y.M. and M. Gale, Jr., Immune signaling by RIG-I-like receptors. Immunity, 2011. 34(5): p. 680-92. 25. Belgnaoui, S.M., S. Paz, and J. Hiscott, Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol, 2011. 23(5): p. 564-72. 26. Sun, L., et al., Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013. 339(6121): p. 786-91. 27. Wu, J., et al., Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013. 339(6121): p. 826-30. 28. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol, 2011. 1(6): p. 519-25. 29. Hornung, V., et al., 5'-Triphosphate RNA is the ligand for RIG-I. Science, 2006. 314(5801): p. 994-7. 30. Kato, H., et al., Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med, 2008. 205(7): p. 1601-10. 31. Saito, T., et al., Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A, 2007. 104(2): p. 582-7. 32. Kawai, T., et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005. 6(10): p. 981-8. 33. Paz, S., et al., A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res, 2011. 21(6): p. 895-910. 34. Xu, L.G., et al., VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 2005. 19(6): p. 727-40. 35. Fitzgerald, K.A., et al., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003. 4(5): p. 491-6. 36. Osterlund, P.I., et al., IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J Immunol, 2007. 179(6): p. 3434-42. 37. Dixit, E., et al., Peroxisomes are signaling platforms for antiviral innate immunity. Cell, 2010. 141(4): p. 668-81. 38. Odendall, C., et al., Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol, 2014. 15(8): p. 717-26. 39. Kontsek, P., G. Karayianni-Vasconcelos, and E. Kontsekova, The human interferon system: characterization and classification after discovery of novel members. Acta Virol, 2003. 47(4): p. 201-15. 40. Schroder, K., et al., Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol, 2004. 75(2): p. 163-89. 41. Stark, G.R. and J.E. Darnell, Jr., The JAK-STAT pathway at twenty. Immunity, 2012. 36(4): p. 503-14. 42. Levy, D.E., et al., Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev, 1988. 2(4): p. 383-93. 43. Kotenko, S.V., et al., IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol, 2003. 4(1): p. 69-77. 44. Doyle, S.E., et al., Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology, 2006. 44(4): p. 896-906. 45. Zhou, Z., et al., Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol, 2007. 81(14): p. 7749-58. 46. Mendoza, J.L., et al., The IFN-lambda-IFN-lambdaR1-IL-10Rbeta Complex Reveals Structural Features Underlying Type III IFN Functional Plasticity. Immunity, 2017. 46(3): p. 379-392. 47. Kohli, A., et al., Distinct and overlapping genomic profiles and antiviral effects of Interferon-lambda and -alpha on HCV-infected and noninfected hepatoma cells. J Viral Hepat, 2012. 19(12): p. 843-53. 48. Jilg, N., et al., Kinetic differences in the induction of interferon stimulated genes by interferon-alpha and interleukin 28B are altered by infection with hepatitis C virus. Hepatology, 2014. 59(4): p. 1250-61. 49. Kotenko, S.V. and J.E. Durbin, Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem, 2017. 292(18): p. 7295-7303. 50. Mahlakoiv, T., et al., Leukocyte-derived IFN-alpha/beta and epithelial IFN-lambda constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog, 2015. 11(4): p. e1004782. 51. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45. 52. Pavlovic, J., O. Haller, and P. Staeheli, Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J Virol, 1992. 66(4): p. 2564-9. 53. Diamond, M.S. and M. Farzan, The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol, 2013. 13(1): p. 46-57. 54. Power, D., et al., IFI44 suppresses HIV-1 LTR promoter activity and facilitates its latency. Virology, 2015. 481: p. 142-50. 55. Silverman, R.H., Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol, 2007. 81(23): p. 12720-9. 56. Morales, D.J. and D.J. Lenschow, The antiviral activities of ISG15. J Mol Biol, 2013. 425(24): p. 4995-5008. 57. Wang, X., E.R. Hinson, and P. Cresswell, The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe, 2007. 2(2): p. 96-105. 58. Malakhov, M.P., et al., UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem, 2002. 277(12): p. 9976-81. 59. Selvakumar, T.A., et al., Identification of a Predominantly Interferon-lambda-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells. Front Immunol, 2017. 8: p. 1302. 60. Hodge, R.G. and A.J. Ridley, Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol, 2016. 17(8): p. 496-510. 61. Glaven, J.A., et al., The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem, 1999. 274(4): p. 2279-85. 62. Jaffe, A.B. and A. Hall, Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 2005. 21: p. 247-69. 63. Krendel, M., F.T. Zenke, and G.M. Bokoch, Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol, 2002. 4(4): p. 294-301. 64. Birkenfeld, J., et al., GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell, 2007. 12(5): p. 699-712. 65. Birkenfeld, J., et al., Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol, 2008. 18(5): p. 210-9. 66. Fukazawa, A., et al., GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog, 2008. 4(11): p. e1000228. 67. Guo, F., et al., GEF-H1-RhoA signaling pathway mediates LPS-induced NF-kappaB transactivation and IL-8 synthesis in endothelial cells. Mol Immunol, 2012. 50(1-2): p. 98-107. 68. Chiang, H.S., et al., GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol, 2014. 15(1): p. 63-71. 69. Zhao, Y., et al., Microbial recognition by GEF-H1 controls IKKepsilon mediated activation of IRF5. Nat Commun, 2019. 10(1): p. 1349. 70. Organ, E.L. and D.H. Rubin, Pathogenesis of reovirus gastrointestinal and hepatobiliary disease. Curr Top Microbiol Immunol, 1998. 233(Pt 2): p. 67-83. 71. Ooms, L.S., et al., A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem, 2010. 285(53): p. 41604-13. 72. Rubin, D.H., M.J. Kornstein, and A.O. Anderson, Reovirus serotype 1 intestinal infection: a novel replicative cycle with ileal disease. J Virol, 1985. 53(2): p. 391-8. 73. Quaroni, A., et al., Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol, 1979. 80(2): p. 248-65. 74. Schaper, F., et al., Functional domains of interferon regulatory factor I (IRF-1). Biochem J, 1998. 335 ( Pt 1): p. 147-57. 75. Mundt, E., Human MxA protein confers resistance to double-stranded RNA viruses of two virus families. J Gen Virol, 2007. 88(Pt 4): p. 1319-23. 76. Edelmann, K.H., et al., Does Toll-like receptor 3 play a biological role in virus infections? Virology, 2004. 322(2): p. 231-8. 77. Katayama, Y., et al., Oncolytic Reovirus Inhibits Immunosuppressive Activity of Myeloid-Derived Suppressor Cells in a TLR3-Dependent Manner. J Immunol, 2018. 200(8): p. 2987-2999. 78. Maitra, R., et al., Toll like receptor 3 as an immunotherapeutic target for KRAS mutated colorectal cancer. Oncotarget, 2017. 8(21): p. 35138-35153. 79. Ulmer, A.J. and H.D. Flad, Discontinuous density gradient separation of human mononuclear leucocytes using Percoll as gradient medium. J Immunol Methods, 1979. 30(1): p. 1-10. 80. Caux, C., et al., GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature, 1992. 360(6401): p. 258-61. 81. Roignot, J., X. Peng, and K. Mostov, Polarity in mammalian epithelial morphogenesis. Cold Spring Harb Perspect Biol, 2013. 5(2). 82. Bhushal, S., et al., Cell Polarization and Epigenetic Status Shape the Heterogeneous Response to Type III Interferons in Intestinal Epithelial Cells. Front Immunol, 2017. 8: p. 671. 83. Kondo, Y., et al., Growth and differentiation of fetal rat small intestinal epithelium in tissue culture. Relationship to fetal age. Exp Cell Res, 1984. 153(1): p. 121-34. 84. Rodriguez-Serrano, F., et al., Differentiation of intestinal epithelial cells mediated by cell confluence and/or exogenous nucleoside supplementation. Cells Tissues Organs, 2010. 191(6): p. 478-88. 85. Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586-1597. 86. Fujita, T., et al., Induction of endogenous IFN-alpha and IFN-beta genes by a regulatory transcription factor, IRF-1. Nature, 1989. 337(6204): p. 270-2. 87. Yamane, D., et al., Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol, 2019. 4(7): p. 1096-1104. 88. Ingle, H., S.T. Peterson, and M.T. Baldridge, Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses, 2018. 10(1). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77235 | - |
| dc.description.abstract | 諾羅病毒、輪狀病毒等腸胃道病毒常見的腸胃炎病因,尤其對免疫系統尚未發育完全的嬰幼兒是足以致命的。近年來有越來越多證據顯示第三型干擾素是黏膜組織中主要的抗病毒分子,然而目前仍不清楚第三型干擾素在腸道黏膜組織的抗病毒反應中是如何被調控的。過去的研究已經證實GEF-H1 (guanine nucleotide exchange factor H1) 能夠調控第一型干擾素在抗病毒反應中的表現,因此我們想要探討GEF-H1對於第三型干擾素是否也有調控作用,並且在腸道抗病毒反應中是否扮演著調控的角色。
我們發現在呼腸孤病毒感染模型中,GEF-H1缺陷會造成小鼠較容易被病毒感染,而且小腸組織的病變程度會比較嚴重。此外,GEF-H1缺陷小鼠小腸中的第一型和第三型干擾素表現量也是較低的。我們進一步探討GEF-H1在上皮細胞以及固有層的白血球中是否有不同的影響,結果發現在聚肌胞苷酸 (Poly I:C) 刺激下,GEF-H1剔除的上皮細胞中第三型干擾素的表現明顯下降,顯示GEF-H1在腸道上皮細胞中扮演著重要的角色。為了探討GEF-H1在腸道上皮細胞中如何調控第三型干擾素的生成,我們利用CRISPR/Cas9技術剔除掉大鼠小腸上皮細胞株 IEC-6中的GEF-H1。如同小鼠體內實驗的結果,第一型和第三型干擾素的表現在GEF-H1剔除的IEC-6中顯著降低。我們也檢驗了典型的和第三型干擾素活化的干擾素激活基因(ISGs)的表現,兩者在剔除的IEC-6中也是降低的。另外我們也使用螢光素酶報告分析方法研究GEF-H1在類RIG-I受體信號通路中所調控的途徑。我們發現GEF-H1主要是參與過氧化體上的線粒體抗病毒信號蛋白的下游反應。活化的線粒體抗病毒信號蛋白會透過信號通路啟動干擾素調控因子1和3,進而引起干擾素的表現。我們也發現干擾素調控因子1和3的活化需要GEF-H1的調控。 總結我們的發現,我們揭露了GEF-H1在小腸上皮組織中扮演著調控干擾素生成的角色,進而影響宿主的抗病毒感染能力。 | zh_TW |
| dc.description.abstract | Enteric viruses, such as rotaviruses and noroviruses, are the most common causes of gastroenteritis in infants and young children. Growing evidence have established that type III interferon (IFN) is the major cytokine which mediates antiviral immune responses at mucosal barriers. However, the key regulator of type III IFN expression in the gut during enteric virus infection is still unclear. Here we showed that a microtubule-associated protein, guanine nucleotide exchange factor H1 (GEF-H1), which has been identified as the essential molecule for RIG-I-like receptor (RLR)-mediated type I IFN responses, is critical for antiviral immunity in the gut. Reovirus infection model showed that GEF-H1-deficient mice were more susceptible to reovirus infection, which was accompanied by impaired type I and type III IFN production in the small intestine. Furthermore, the expressions of Ifnb and Ifnl were profoundly reduced in the epithelial cells isolated from poly(I:C)-administrated GEF-H1-deficient mice, revealing the role of GEF-H1 in the intestinal epithelial cells. To characterize the role of GEF-H1 in the induction of IFN in the intestinal epithelial cells, we generated GEF-H1 knockout intestinal epithelial cell line IEC-6 by CRISPR/Cas9 system. The GEF-H1 knockout IEC-6 exhibited diminished Ifnb and Ifnl expressions as well as interferon-stimulated genes (ISGs). Moreover, ISGs that were specifically induced by IFN-λ were also reduced. In addition, we also used luciferase reporter assays to examine type I and type III IFN promoter activation in GEF-H1 overexpressed HEK293T cells. Expression of GEF-H1 significantly amplified MAVS-induced activation of type I and type III IFN promoter. Moreover, the activation of IRF1 and IRF3 that were the transcription factors of type I and type III IFNs was dependent on the expression of GEF-H1. In summary, our results revealed that GEF-H1 is the critical factor that controls both type I and III IFN expressions for the enteric virus restriction in the intestine. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:52:07Z (GMT). No. of bitstreams: 1 ntu-108-R06b21014-1.pdf: 3024856 bytes, checksum: 40dd5fa120f394a9499f20301008b139 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 2
致謝 3 中文摘要 4 Abstract 6 Contents 8 Chapter 1 Introduction 11 1.1 Intestinal barrier and intestinal homeostasis 11 1.1.1 Mucus layer 11 1.1.2 Epithelium 12 1.1.3 Lamina propria 13 1.2 Innate antiviral responses 14 1.2.1 RIG-I like receptors signaling pathway 15 1.2.2 Type I and Type III interferon 16 1.2.3 Interferon-stimulated genes 18 1.3 Guanine nucleotide changing factor H1 20 1.4. Specific aims 22 Chapter 2 Materials and methods 23 2.1 Mice 23 2.2 Cell line 23 2.3 CRISPR/Cas9 system knock out Arhgef2 24 2.4 Reovirus infection model 24 2.5 Plaque assay 25 2.6 H&E staining 26 2.7 ELISA 26 2.8 Poly(I:C) stimulation 27 2.9 Intestinal epithelial cells and lamina propria cells isolation 27 2.10 Quantitative Real-Time PCR 28 2.11 Western blotting 29 2.12 Luciferase assay 30 Chapter 3 Results 32 3.1 Arhgef2-/- mice are more susceptible to reovirus infection and have insufficient type I and type III interferon production. 32 3.2 The tissue damage of ilium of Arhgef2-/- mice are modestly severe than WT mice under reovirus infection. 34 3.3 The expressions of Ifnb1 and Ifnl2/3 were profoundly reduced in the small intestinal epithelial cells isolated from poly(I:C)-administrated Arhgef2-/- mice. 35 3.4 Using the CRISPR/Cas9 system to knock out Arhgef2 in rat intestinal epithelial cell line IEC-6. 37 3.5 Arhgef2-/- IEC-6 cells exhibited reduced Ifnb1 and Ifnl1/3 expression in response to poly(I:C) stimulation in vitro. 38 3.6 GEF-H1 is able to enhance MAVS-Pex13 mediated IFN-β and IFN-λ promoter activation. 39 3.7 IRF1 is the major transcription factor driving type I and type III IFN expression in intestinal epithelial cells. 40 Chapter 4 Discussion 42 Chapter 5 Conclusion 47 Figures 48 Tables 60 Reference 64 | - |
| dc.language.iso | en | - |
| dc.subject | 粘膜免先天免疫 | zh_TW |
| dc.subject | 腸道屏障 | zh_TW |
| dc.subject | 第三型干擾素 | zh_TW |
| dc.subject | 第一型干擾素 | zh_TW |
| dc.subject | 類RIG-I受體信號通路 | zh_TW |
| dc.subject | GEF-H1 | zh_TW |
| dc.subject | GEF-H1 | en |
| dc.subject | Mucosal Immunity | en |
| dc.subject | Innate Immunity | en |
| dc.subject | Intestinal barrier | en |
| dc.subject | RLR Signalling Pathway | en |
| dc.subject | Type I Interferon | en |
| dc.subject | Type III Interferon | en |
| dc.title | 探討GEF-H1在小腸中調控第三型干擾素表現與抗病毒反應 | zh_TW |
| dc.title | The Role of GEF-H1 in Type III Interferon Expression for Antiviral Host Defenses in the Intestine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊任;劉明禕 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 粘膜免先天免疫,腸道屏障,類RIG-I受體信號通路,第一型干擾素,第三型干擾素,GEF-H1, | zh_TW |
| dc.subject.keyword | Mucosal Immunity,Innate Immunity,Intestinal barrier,RLR Signalling Pathway,Type I Interferon,Type III Interferon,GEF-H1, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU201903371 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-15 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
