請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林亮音 | |
| dc.contributor.author | Tzu-Yun Li | en |
| dc.contributor.author | 李子筠 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:51:19Z | - |
| dc.date.available | 2022-09-08 | |
| dc.date.available | 2021-05-19T17:51:19Z | - |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-10 | |
| dc.identifier.citation | 1.Postlethwait JH, Yan YL, Gates MA, et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998 Apr; 18(4):345-9.
2.Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005 Jan; 4(1):35-44. 3.Rasighaemi P, Basheer F, Liongue C, Ward AC. Zebrafish as a model for leukemia and other hematopoietic disorders. J Hematol Oncol. 2015; 8: 29. 4.Lu JW, Hsieh MS, Liao HA, Yang YJ, Ho YJ, Lin LI. Zebrafish as a Model for the Study of Human Myeloid Malignancies. Biomed Res Int. 2015; 2015:641475. 5.Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008 Feb 22; 132(4):631-44. 6.Davidson AJ, Zon LI. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene. 2004 Sep 20; 23(43):7233-46. 7.Galloway JL, Zon LI. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol. 2003; 53:139-58. 8.Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development. 1990 Apr; 108(4):581-94. 9.Warga RM, Nüsslein-Volhard C. Origin and development of the zebrafish endoderm. Development. 1999 Feb; 126(4):827-38. 10.Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 1999 Sep; 126(17):3735-45. 11.Crowhurst MO, Layton JE, Lieschke GJ. Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002; 46(4):483-92. 12.Berman JN, Kanki JP, Look AT. Zebrafish as a model for myelopoiesis during embryogenesis. Exp Hematol. 2005 Sep; 33(9):997-1006. 13.Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, et al. Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A. 1995 Nov 7; 92(23):10713-7. 14.Jin H, Xu J, Wen Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood. 2007 Jun 15; 109(12):5208-14. 15.Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H-F, et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006 Dec; 25(6):963-75. 16.Dooley KA, Davidson AJ, Zon LI. Zebrafish scl functions independently in hematopoietic and endothelial development. Dev Biol. 2005 Jan 15; 277(2):522-36. 17.Paik EJ, Zon LI. Hematopoietic development in the zebrafish. Int J Dev Biol. 2010; 54(6-7):1127-37. 18.Patterson LJ, Gering M, Eckfeldt CE, et al. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood. 2007 Mar 15; 109(6):2389-98. 19.Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene. 2002 May 13; 21(21):3368-76. 20.Amatruda JF, Zon LI. Dissecting hematopoiesis and disease using the zebrafish. Dev Biol. 1999 Dec 1; 216(1):1-15. 21.Ward AC, McPhee DO, Condron MM, et al. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood. 2003 Nov 1; 102(9):3238-40. 22.Bennett CM, Kanki JP, Rhodes J, et al. Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001 Aug 1; 98(3):643-51. 23.Kalev-Zylinska ML, Horsfield JA, Flores MV, et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development. 2002 Apr; 129(8):2015-30. 24.Zhang Y, Jin H, Li L, Qin FX, Wen Z. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood. 2011 Oct 13; 118(15):4093-101. 25.Jin H, Huang Z, Chi Y, et al. c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood. 2016 Jul 21; 128(3):415-26. 26.Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006 Nov 25; 368(9550):1894-907. 27.American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society; 2017. 28.Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999 Sep 30; 341(14):1051-62. 29.Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010 Jan 21; 115(3):453-74. 30.Small D. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program. 2006:178-84. 31.Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia. 2012 Oct; 26(10):2176-85. 32.Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30; 368(22):2059-74. 33.Breitenbuecher F, Schnittger S, Grundler R, et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009 Apr 23; 113(17):4074-7. 34.Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003 Sep; 17(9):1738-52. 35.Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012 Apr 15; 485(7397): 260–263. 36.Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009 Jan; 9(1):28-39. 37.Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011 Feb 10; 29(5):487-94. 38.Chang E, Ganguly S, Rajkhowa T, et al. The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells. Leukemia. 2016 May; 30(5):1025-32. 39.Parmar A, Marz S, Rushton S, et al. Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res. 2011 Jul 1; 71(13):4696-706. 40.Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics. 2009 Oct; 10(10):1657-74. 41.Richard L.Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp Hematol Oncol. 2013; 2: 20. 42.Fathi AT, Chen YB. The role of FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia. Eur J Haematol. 2017 Apr; 98(4):330-336. 43.Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009 Oct 1; 114(14):2984-92. 44.Burnett AK, Bowen D, Russell N, et al. AC220 (Quizartinib) can be safely combined with conventional chemotherapy in older patients with newly diagnosed acute myeloid leukaemia: Experience from the AML18 pilot trial. Blood 122:622, 2013 45.Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011 Dec; 10(12):2298-308. 46.Lu JW, Wang AN, Liao HA, et al. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Lett. 2016 Jul 1; 376(2):218-25. 47.Liao HA. Exploration of cabozantinib as selective inhibitor against refractory acute myeloid leukemia with flt3-itd mutations in vitro and in vivo. National Taiwan University, 2015. 48.Lu JW, Hou HA, Hsieh MS, et al. Overexpression of FLT3-ITD driven by spi-1 results in expanded myelopoiesis with leukemic phenotype in zebrafish. Leukemia. 2016 Oct; 30(10):2098-2101. 49.Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. 50.Huang CJ, Tu CT, Hsiao CD, et al. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003 Sep; 228(1):30-40. 51.Liu W, Wu M, Huang Z, et al. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia. 2017 Jan; 31(1):222-233. 52.Peng X, Dong M, Ma L, et al. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease. Leukemia. 2015 Dec; 29(12):2355-65. 53.He BL, Shi X, Man CH, et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood. 2014 Apr 17; 123(16):2518-29. 54.Quentmeier H, Reinhardt J, Zaborski M, Drexler HG. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 2003 Jan; 17(1):120-4. 55.Kelly LM, Liu Q, Kutok JL, et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002 Jan 1; 99(1):310-8. 56.Li L, Piloto O, Nguyen HB, et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood. 2008 Apr 1; 111(7):3849-58. 57.Bakri Y, Sarrazin S, Mayer UP, et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood. 2005 Apr 1; 105(7):2707-16. 58.Waskow C, Liu K, Darrasse-Jèze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008 Jun; 9(6):676-83. 59.Lau CM, Nish SA, Yogev N, et al. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses. J Exp Med. 2016 Mar 7; 213(3):415-31. 60.Rhodes J, Hagen A, Hsu K, et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell. 2005 Jan; 8(1):97-108. 61.Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A. 2008 Mar 4; 105(9):3333-8. 62.Whitman SP, Maharry K, Radmacher MD, et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood. 2010 Nov 4; 116(18):3622-6. 63.Knorr KL, Finn LE, Smith BD, et al. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells from Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo. Stem Cells Transl Med. 2017 Mar; 6(3):840-850. 64.Hubeek I, Stam RW, Peters GJ, et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 2005 Dec 12; 93(12):1388-94. 65.Jin G, Matsushita H, Asai S, et al. FLT3-ITD induces ara-C resistance in myeloid leukemic cells through the repression of the ENT1 expression. Biochem Biophys Res Commun. 2009 Dec 18; 390(3):1001-6. 66.Furukawa Y, Vu HA, Akutsu M, et al. Divergent cytotoxic effects of PKC412 in combination with conventional antileukemic agents in FLT3 mutation-positive versus -negative leukemia cell lines. Leukemia. 2007 May; 21(5):1005-14. 67.Food and Drug Administration. COMETRIQ™ (cabozantinib) Label. Food and Drug Administration 2012. 68.Zhu JJ, Xu YQ, He JH, et al. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol. 2014 Feb; 34(2):139-48. 69.Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002 Jun 15; 99(12):4326-35. 70.Testa U, Pelosi E. The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias. Leukemia Research and Treatment. 2013; 2013:275760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7722 | - |
| dc.description.abstract | 斑馬魚有生長周期快速、胚胎透明易觀察和對小分子化合物穿透性高的優點,且在基因序列及造血過程與哺乳類相似,而常成為研究胚胎造血及相關血液疾病的模型和大規模基因或藥物篩選的動物平台。
急性骨髓性白血病(AML)為一種骨髓系白血球不正常增生及分化的血液疾病 ,在AML的病人中含有FLT3-ITD (為FMS-like tyrosine kinase 3 (FLT3)的juxtamembrane domain突變 )突變的病人占20 ~30%且通常有著較差的預後、低存活率及高復發率;研究指出FLT3和細胞的存活、增生及分化有關,並已在細胞及老鼠實驗中發現FLT3-ITD確實會造成骨髓系白血球不正常增生並抑制其分化。本實驗室之前已成功建立一個可經由骨髓系白血球專一表現之啟動子驅動人類FLT3-ITD表現的基因轉殖斑馬魚模型- Tg(spi1:FLT3-ITD-2A-EGFP)。本論文主要是探討此斑馬魚之胚胎造血特性,並評估此斑馬魚能成為一個AML藥物篩選平台的可能性。 首先使用原位雜交(WISH)來觀察各種血球細胞的標誌,以評估各血球細胞表現狀況。先觀察骨髓系白血球相關標誌spi1、cebpa和mpo在48 hpf的斑馬魚中的表現量,發現在過度表現FLT3-ITD的斑馬魚胚胎中,三者的表現量均增加,也代表著骨髓系白血球的增加,並同時使用蘇丹黑染色再確認此骨髓系白血球增加的結果。另外,在此斑馬魚中可看到48 hpf時,紅血球標誌hbae1表現量減少及96 hpf在胸腺部位淋巴性白血球標誌rag1表現量增加。接著使用Q-PCR分析48 hpf時各造血相關轉錄因子之表現情況,發現血液血管母細胞(scl和lmo2)、淋巴性白血球(rag1)、骨髓系白血球(cebpa和mpo)相關之轉錄因子都有受到FLT3-ITD的影響而有改變;這些改變可能是造成斑馬魚中三種細胞數量都增加的原因。在紅血球中發現轉錄因子gata1的表現量與野生型斑馬魚的並無差異;可是代表血紅素之hbae1的表現量卻有減少的現象,顯示成熟紅血球減少。另外,巨噬細胞相關之轉錄因子則無顯著增加或減少。另一方面,在次級造血hematopoiestic stem cell (HSC)相關之轉錄因子的部分則無顯著增加或減少,推測在骨髓系白血球中專一且過度表現FLT3-ITD的情況下不會影響次級造血。 接著,我們使用常見AML治療藥物以及數種FLT3-ITD的標靶藥物來評估此平台可行性;將6 hpf的斑馬魚胚胎分別浸泡於Cytarabine (AraC)、Midostaurin (PKC412)、Quizartinib (AC220)和Cabozantinib (XL184)或DMSO(對照組)的溶液中,在48 hpf時收集胚胎以原位雜交- mpo及蘇丹黑染色作分析。結果顯示,使用AraC、PKC412和AC220者皆可抑制斑馬魚骨髓系白血球增加的情形,並回復到類似野生型斑馬魚的數量;而在100 nM的XL184中則無抑制效果。雖然將XL184的濃度提高到250 nM可以抑制骨髓系白血球的增加,但卻有20%的魚胚胎發生心臟水腫的現象。 從以上結果中可知,Tg(spi1:FLT3-ITD-2A-EGFP)胚胎雖然只在骨髓系白血球中專一且過度表現FLT3-ITD,卻會造成骨髓系白血球及淋巴性白血球的增加和紅血球的減少;使用AML相關藥物AraC、PKC412和AC220均可達到骨髓系白血球減少的效果。因此我們建議此基因轉殖斑馬魚可以作為白血病藥物篩選平台。 | zh_TW |
| dc.description.abstract | With the advantage of rapid growth, transparent embryos, high permeability for small molecules until 5 dpf and high similarity of hematopoiesis-associated gene sequences to mammals, zebrafish has been as a powerful animal model to study the hematopoiesis and hematologic malignancies, and as a suitable platform for large-scale genetic and drug screening.
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by uncontrolled proliferation of myeloid progenitor cells. FLT3-ITD mutation at juxtamembrane domain occurs in 20 ~30% AML patient and is associated with poor prognosis, low survival time and high frequency of relapse. FLT3 can regulate proliferation, differentiation and apoptosis of hematopoietic progenitor cells; in contrast, FLT3-ITD mutation could result in uncontrolled cell proliferation and suppression of myeloid cell maturation both in vitro and in vivo. Previously, we established a transgenic zebrafish- Tg(spi1:FLT3-ITD-2A-EGFP) and characterized its leukemia phenotype. In this study, we want to evaluate the feasibility of this transgenic zebrafish to be an in vivo platform for anti-leukemic drugs screening. At first, we found that the expressions of the myeloid cell markers, spi1, cebpα and mpo, were increased in 48 hpf fish by using whole-mount in situ hybridization (WISH); subsequently, the sudan black (SB) staining revealed similar findings. In addition, we found that the expression of lymphoid cell marker, rag1, was increased in 96 hpf fish, but the expression of erythroid cell marker, hbae1, was decreased in 48 hpf fish. Then, quantitative real-time PCR (Q-PCR) revealed that the expressions of hemangioblast, myeloid cells and lymphoid cell-related transcription factors were increased in this zebrafish. There were no significant differences in the expression of erythroid cell-related transcription factor, gata1; however, significant decreased hbae1 were noted. These results demonstrated decreased mature erythroid cells were decreased in this transgenic zebrafish. Finally, there were no significant differences in the expression of macrophage-related and definitive HSC-related transcription factors. Then, we evaluated the effects of several anti-leukemic drugs on this transgenic zebrafish Tg(spi1:FLT3-ITD-2A-EGFP). Embryos at 6hpf were incubated with Cytarabine (AraC), Midostaurin (PKC412), Quizartinib (AC220), Cabozantinib (XL184) or DMSO. The numbers of mpo+ cells and SB+ cells were calculated at 48 hpf. We found that AraC, PKC412 and AC220 significantly reduced the amount of myeloid cells in this zebrafish, while 100 nM XL184 had no effects on this zebrafish. Although XL184 at dosage of 250 nM could reduce the amount of myeloid cells in this zebrafish, the heart edema was emerged in 20% embryos at the same time. In conclusion, although the Tg(spi1:FLT3-ITD-2A-EGFP) zebrafish only expressed FLT3-ITD in myeloid cells, increased myeloid cells and lymphoid cells, as well as decreased erythroid cells were demonstrated. All compounds we used in this study could decrease the amount of myeloid cells in this zebrafish; therefore, Tg(spi1:FLT3-ITD-2A-EGFP) zebrafish would be an appropriate platform for screening anti-leukemic drugs. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:51:19Z (GMT). No. of bitstreams: 1 ntu-106-R04424027-1.pdf: 3820141 bytes, checksum: 2f9ea4e7a2c7b512e272dd47b7948617 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 ………………………………………………………………………………………………………………I 致謝 …………………………………………………………………………………………………………………………………………II 目錄 ………………………………………………………………………………………………………………………………………III 圖目錄 ……………………………………………………………………………………………………………………………………VI 表目錄 …………………………………………………………………………………………………………………………………VII 縮寫表 ………………………………………………………………………………………………………………………………VIII 摘要 ………………………………………………………………………………………………………………………………………IX Abstract ……………………………………………………………………………………………………………………………XI 第一章 前言 …………………………………………………………………………………………………………………………1 1.1 斑馬魚………………………………………………………………………………………………………………………………1 1.2 斑馬魚造血系統與血球發育……………………………………………………………………………………1 1.3 斑馬魚造血相關轉錄因子………………………………………………………………………………………2 1.4 急性骨髓性白血病……………………………………………………………………………………………………3 1.5 FLT3………………………………………………………………………………………………………………………………4 1.6 酪胺酸激酶抑制劑……………………………………………………………………………………………………4 1.6.1 Cytarabine (AraC)………………………………………………………………………………………5 1.6.2 Midostaurin (PKC412)………………………………………………………………………………5 1.6.3 Quizartinib (AC220)…………………………………………………………………………………5 1.6.4 Cabozantinib (XL184)………………………………………………………………………………6 1.7 Tg(spi1:FLT3-ITD-2A-EGFP)………………………………………………………………………6 第二章 研究目的 ………………………………………………………………………………………………………………7 第三章 材料與方法 …………………………………………………………………………………………………………8 3.1 材料 ………………………………………………………………………………………………………………………………8 3.1.1 斑馬魚………………………………………………………………………………………………………………………8 3.1.2 儀器設備…………………………………………………………………………………………………………………8 3.1.3 藥品……………………………………………………………………………………………………………………………9 3.1.4 抗體…………………………………………………………………………………………………………………………11 3.1.5 酵素與試劑……………………………………………………………………………………………………………11 3.1.6 生物試劑組……………………………………………………………………………………………………………11 3.1.7 藥品與試劑配置……………………………………………………………………………………………………12 3.2 方法 ………………………………………………………………………………………………………………………………13 3.2.1 斑馬魚 ……………………………………………………………………………………………………………………13 3.2.2 全量RNA萃取…………………………………………………………………………………………………………14 3.2.3 反轉錄聚合酶連鎖反應………………………………………………………………………………………15 3.2.4 聚合酶連鎖反應……………………………………………………………………………………………………15 3.2.5 電泳分析…………………………………………………………………………………………………………………16 3.2.6 聚合酶連鎖反應產物純化…………………………………………………………………………………16 3.2.7 定量即時聚合酶連鎖反應…………………………………………………………………………………17 3.2.8 原位雜交…………………………………………………………………………………………………………………17 3.2.9 蘇丹黑染色……………………………………………………………………………………………………………20 3.2.10 胚胎藥理學作用…………………………………………………………………………………………………21 3.2.11 顯微鏡及影像處理……………………………………………………………………………………………21 3.2.12 統計方法………………………………………………………………………………………………………………21 第四章 實驗結果 ………………………………………………………………………………………………………………22 4.1 探討在骨髓系白血球中專一且過度表現FLT3-ITD的情況下對血球細胞的影響……………………………………………………………………………………………………………………………………………22 4.1.1 骨髓系白血球…………………………………………………………………………………………………………22 4.1.2 淋巴性白血球…………………………………………………………………………………………………………22 4.1.3 紅血球………………………………………………………………………………………………………………………22 4.2 探討對造血相關轉錄因子的影響…………………………………………………………………………23 4.3 評估此斑馬魚作為AML藥物篩選平台的可行性………………………………………………23 第五章 討論 …………………………………………………………………………………………………………………………25 第六章 參考文獻 ………………………………………………………………………………………………………………29 圖 ………………………………………………………………………………………………………………………………………………37 表 ………………………………………………………………………………………………………………………………………………56 附圖 …………………………………………………………………………………………………………………………………………59 附表 …………………………………………………………………………………………………………………………………………67 | |
| dc.language.iso | zh-TW | |
| dc.title | 以骨髓系特異表現FLT3-ITD轉殖基因斑馬魚作為白血病藥物篩選平台的評估 | zh_TW |
| dc.title | Evaluation of Tg(spi1:FLT3-ITD-2A-EGFP) zebrafish as a platform for screening anti-leukemic drugs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧雅真,胡忠怡,郭遠燁,歐大諒 | |
| dc.subject.keyword | FLT3-ITD,spi1啟動子,基因轉殖斑馬魚,造血,骨髓惡性血液疾病,酪胺酸激?抑制劑, | zh_TW |
| dc.subject.keyword | FLT3-ITD,spi1 promoter,transgenic zebrafish,hematopoiesis,hematologic malignancies,tyrosine kinase inhibitor, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201702943 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 3.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
