請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江皓森 | zh_TW |
| dc.contributor.advisor | Hao-Sen Chiang | en |
| dc.contributor.author | 林以信 | zh_TW |
| dc.contributor.author | Elliot Yi-Hsin Lin | en |
| dc.date.accessioned | 2021-07-10T21:51:37Z | - |
| dc.date.available | 2024-08-14 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Kaplan, G.G. and S.C. Ng, Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 2017. 152(2): p. 313-321 e2.
2. Ye, Y., et al., The epidemiology and risk factors of inflammatory bowel disease. Int J Clin Exp Med, 2015. 8(12): p. 22529-42. 3. Abraham, C. and J.H. Cho, Inflammatory bowel disease. N Engl J Med, 2009. 361(21): p. 2066-78. 4. Dragasevic, S., et al., Genetic and environmental factors significant for the presentation and development of inflammatory bowel disease. Eur J Gastroenterol Hepatol, 2017. 29(8): p. 909-915. 5. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): p. 550-64. 6. Taurog, J.D., et al., The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med, 1994. 180(6): p. 2359-64. 7. Heller, F., et al., Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol, 2008. 1 Suppl 1: p. S58-61. 8. Muthas, D., et al., Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand J Gastroenterol, 2017. 52(2): p. 125-135. 9. Thia, K.T., et al., Risk factors associated with progression to intestinal complications of Crohn's disease in a population-based cohort. Gastroenterology, 2010. 139(4): p. 1147-55. 10. Moller, F.T., et al., Familial risk of inflammatory bowel disease: a population-based cohort study 1977-2011. Am J Gastroenterol, 2015. 110(4): p. 564-71. 11. Ananthakrishnan, A.N., Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol, 2015. 12(4): p. 205-17. 12. Kostic, A.D., R.J. Xavier, and D. Gevers, The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology, 2014. 146(6): p. 1489-99. 13. Torres, J., et al., Crohn's disease. Lancet, 2017. 389(10080): p. 1741-1755. 14. Stallhofer, J., et al., Lipocalin-2 Is a Disease Activity Marker in Inflammatory Bowel Disease Regulated by IL-17A, IL-22, and TNF-alpha and Modulated by IL23R Genotype Status. Inflamm Bowel Dis, 2015. 21(10): p. 2327-40. 15. Thorsvik, S., et al., Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn's disease. Cell Tissue Res, 2018. 374(2): p. 339-348. 16. Borregaard, N., Neutrophils, from marrow to microbes. Immunity, 2010. 33(5): p. 657-70. 17. Sadik, C.D., N.D. Kim, and A.D. Luster, Neutrophils cascading their way to inflammation. Trends Immunol, 2011. 32(10): p. 452-60. 18. Galli, S.J., N. Borregaard, and T.A. Wynn, Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol, 2011. 12(11): p. 1035-44. 19. Lieschke, G.J., et al., Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood, 1994. 84(6): p. 1737-46. 20. Zeidler, C., et al., Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol, 2009. 144(4): p. 459-67. 21. Ley, K., et al., Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol, 2007. 7(9): p. 678-89. 22. Ley, K., et al., Neutrophils: New insights and open questions. Sci Immunol, 2018. 3(30). 23. Hager, M., J.B. Cowland, and N. Borregaard, Neutrophil granules in health and disease. J Intern Med, 2010. 268(1): p. 25-34. 24. Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science, 2004. 303(5663): p. 1532-5. 25. Honda, M. and P. Kubes, Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol, 2018. 15(4): p. 206-221. 26. Kawasaki, H. and S. Iwamuro, Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets, 2008. 8(3): p. 195-205. 27. Ganz, T., Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol, 2003. 3(9): p. 710-20. 28. Urban, C.F., et al., Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009. 5(10): p. e1000639. 29. Walker, M.J., et al., DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med, 2007. 13(8): p. 981-5. 30. Pilsczek, F.H., et al., A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol, 2010. 185(12): p. 7413-25. 31. Yipp, B.G., et al., Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med, 2012. 18(9): p. 1386-93. 32. Mori, Y., et al., alpha-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps. J Biol Chem, 2012. 287(13): p. 10472-81. 33. Clark, S.R., et al., Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med, 2007. 13(4): p. 463-9. 34. Carestia, A., et al., Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol, 2016. 99(1): p. 153-62. 35. Pieterse, E., et al., Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Front Immunol, 2016. 7: p. 484. 36. Tripathi, S., et al., LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol, 2014. 96(5): p. 931-8. 37. Saitoh, T., et al., Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe, 2012. 12(1): p. 109-16. 38. Funchal, G.A., et al., Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One, 2015. 10(4): p. e0124082. 39. Byrd, A.S., et al., An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol, 2013. 190(8): p. 4136-48. 40. Baker, V.S., et al., Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J, 2008. 7: p. 41. 41. Branzk, N., et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014. 15(11): p. 1017-25. 42. Saffarzadeh, M., et al., Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One, 2012. 7(2): p. e32366. 43. Fuchs, T.A., et al., Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A, 2010. 107(36): p. 15880-5. 44. Warnatsch, A., et al., Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 2015. 349(6245): p. 316-20. 45. Khandpur, R., et al., NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med, 2013. 5(178): p. 178ra40. 46. Garcia-Romo, G.S., et al., Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med, 2011. 3(73): p. 73ra20. 47. Delgado-Rizo, V., et al., Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol, 2017. 8: p. 81. 48. Park, J., et al., Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med, 2016. 8(361): p. 361ra138. 49. Demers, M., et al., Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A, 2012. 109(32): p. 13076-81. 50. Bennike, T.B., et al., Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. Inflamm Bowel Dis, 2015. 21(9): p. 2052-67. 51. Dinallo, V., et al., Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis, 2019. 13(6): p. 772-784. 52. Gottlieb, Y., et al., Neutrophil extracellular traps in pediatric inflammatory bowel disease. Pathol Int, 2018. 68(9): p. 517-523. 53. Eichele, D.D. and K.K. Kharbanda, Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol, 2017. 23(33): p. 6016-6029. 54. Kim, J.J., et al., Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp, 2012(60). 55. Jurjus, A.R., N.N. Khoury, and J.M. Reimund, Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods, 2004. 50(2): p. 81-92. 56. Boeltz, S., et al., To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ, 2019. 57. Gupta, S. and M.J. Kaplan, The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol, 2016. 12(7): p. 402-13. 58. Hakkim, A., et al., Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A, 2010. 107(21): p. 9813-8. 59. Sur Chowdhury, C., et al., Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther, 2014. 16(3): p. R122. 60. Hampson, P., et al., Neutrophil Dysfunction, Immature Granulocytes, and Cell-free DNA are Early Biomarkers of Sepsis in Burn-injured Patients: A Prospective Observational Cohort Study. Ann Surg, 2017. 265(6): p. 1241-1249. 61. Jimenez-Alcazar, M., et al., Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost, 2015. 13(5): p. 732-42. 62. Sionov, R.V., Z.G. Fridlender, and Z. Granot, The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron, 2015. 8(3): p. 125-58. 63. Jenne, C.N. and P. Kubes, Gastrointestinal cancer: Neutrophils and cancer: guilt by association. Nat Rev Gastroenterol Hepatol, 2016. 13(7): p. 381-2. 64. Lee, K.H., et al., Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev, 2017. 16(11): p. 1160-1173. 65. Bischoff, S.C., et al., Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol, 2014. 14: p. 189. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77223 | - |
| dc.description.abstract | 嗜中性球(Neutrophil)為哺乳類血液中最主要的白血球種類,以吞噬作用(Phagocytosis)、去顆粒化(Degranulation)以及嗜中性球胞外網狀結構(Neutrophil extracellular traps, NETs)等機制,於第一時間參與宿主對入侵病原的防禦並招募其他免疫細胞至發炎處執行後續的免疫功能。嗜中性球胞外網狀結構由網狀組蛋白(Chromatin)與其他顆粒蛋白或細胞質蛋白在細胞內組成複合體後,伴隨著細胞膜的破裂被釋放到細胞外捕捉並破壞病原。
發炎性腸道疾病(Inflammatory Bowel Disease, IBD)主要可分為兩種型態,潰瘍性結腸炎(Ulcerative colitis, UC)與克隆氏症(Crohn’s disease, CD),近期有一蛋白質體分析之研究發現,相較健康的受試者,潰瘍性結腸炎病患的腸道組織切片中,嗜中性球細胞外網相關蛋白伴隨炎症有上升的現象。另於臨床研究中更發現嗜中性白血球浸潤與發炎區域重疊,並且在潰瘍性結腸炎病患的檢體中偵測到較多嗜中性球細胞外網構造。以先前研究的結果初步指出嗜中性球細胞外網對於發炎性腸道疾病而言可能是個不利的因素。 然而,嗜中性球細胞外網本為嗜中性白血球抵抗入侵病原的防禦機制,且在潰瘍性結腸炎的病理情況下,腸道粘膜破損會造成腸道共生微生物有直接入侵宿主的機會,因此嗜中性球細胞外網在發炎的不同時期可能扮演著不同的角色。本篇研究以dextran sulfate sodium(DSS)誘發C57BL/6小鼠產生似人類潰瘍性結腸炎的症狀,再以尾靜脈注射去氧核醣核酸酶 I(Deoxyribonuclease I, DNase I)作為抑制嗜中性球細胞外網結構之藥物,施打後觀察到潰瘍性結腸炎的臨床症狀有減緩的趨勢,並且大腸長度的恢復、發炎細胞浸潤以及腸道結構破損程度上有明顯改善。此外,免疫螢光染色觀察下,給予DNase I組別的小鼠有較少髓過氧化物酶(Myeloperoxidase, MPO)與瓜氨酸化組蛋白 H3(Citrullinated histone H3, Cit H3)之表現,大腸組織的凋亡細胞比例也明顯降低。於腸粘膜細胞凋亡比率上升與腸道通透度增加的結果可推測嗜中性球細胞外網可能直接造成腸道屏障功能受損、促進發炎反應,並導致較嚴重的臨床與病理指標。綜合本篇研究的成果,可以推測嗜中性球細胞外網在急性潰瘍性結腸炎中應扮演著傷害宿主以及過度促炎的角色。 | zh_TW |
| dc.description.abstract | Both the most abundant leukocytes and the first line defense in mammals, neutrophils possess several antimicrobial functions, such as phagocytosis, degranulation, and neutrophil extracellular traps (NETs). They can stop invasive pathogens from spreading by recruiting other immune cells to the site of inflammation and promoting further immune responses for eliminating threats. NETs consisting of web-like chromatin decorated with cytosolic and granule proteins are released by neutrophils to capture and kill the pathogens.
A recent proteome analysis of intestinal biopsies from ulcerative colitis (UC) patients indicates an increased neutrophil abundance and aberrant NET formation in the inflamed colon tissues. Another clinical study shows overlapping of infiltrated neutrophils at the damaged mucosa in UC patients and detects higher NET formation. These results indicate that NETs serve as a detrimental factor in IBD. However, NETs are a defensive mechanism utilized by neutrophils to exclude invasive pathogens during inflammation. In this case, ulcerative colitis causes damage on the epithelial layer and breaches the commensal microorganisms. Excessive inflammation under IBD seems to be related to NET formation to shift to the development of overly active inflammation. Here we demonstrated that reducing NET formation by DNase I administration suppressed the severity of colitis symptoms in mice during DSS-induced colitis. The DNase I treatment also alleviated colon shrinkage, levels of inflammatory marker and pro-inflammatory cytokines, and apoptotic cell coverage in colon tissue. Overall, our results suggested that excessive NETs in colitis are capable of worsening inflammation, promoting apoptosis, and interfering with gut barrier function. Furthermore, the administration of DNase I as a NET inhibitor by intravenous injection can effectively reduce colitis symptoms implying that DNase I can act as a potential treatment or reliever of IBD. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:37Z (GMT). No. of bitstreams: 1 ntu-108-R06b21028-1.pdf: 11595400 bytes, checksum: 3ccbda1cb4fc54177ac7f4c7ab5285dd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Chapter 1. Introduction 1 1.1 Inflammatory bowel disease (IBD) 1 1.1.1 Ulcerative colitis (UC) 2 1.1.2 Crohn’s disease (CD) 3 1.1.3 Current treatments for IBD 3 1.1.4 Neutrophils in IBD 3 1.2 Neutrophils 4 1.2.1 Neutrophils recruitment 4 1.2.2 Defensive mechanisms of neutrophils 5 1.2.3 Neutrophil extracellular traps (NETs) 5 1.2.4 NETs in host defense 6 1.2.5 NETs in diseases 6 1.2.6 NETs in IBD 7 1.3 DSS colitis model 8 1.4 Specific aim 9 Chapter 2. Materials and methods 10 2.1 Mice 10 2.2 DSS colitis model and DNase I administration 10 2.3 Histopathological analysis 11 2.4 Immunofluorescence staining 12 2.5 TUNEL assay 13 2.6 qPCR 14 2.7 Intestinal permeability assay – FITC-dextran 16 2.8 Intestinal permeability assay – mesenteric lymph node bacterial translocation assay 17 2.9 ELISA 18 2.10 Statistical analysis 18 Chapter 3. Results 20 3.1 8-day 2.5% DSS acute colitis model showed similarities in clinical signs and pro-inflammatory conditions with human ulcerative colitis. 20 3.2 Higher level of neutrophil extracellular traps were triggered by the acute colitis, promoting apoptosis in colon tissue. 22 3.3 DNase I as NETs inhibitor can effectively reduce NET formations in inflamed colon. 23 3.4 Clinical symptoms and inflammation showed decreased severities under the use of DNase I treatment. 24 3.5 Decreased NETs ameliorate apoptosis and colitis pathology in colon and showed improved epithelial integrity. 25 3.6 NETs increased intestinal permeability in acute colitis. 26 Chapter 4. Discussion 27 Chapter 5. Conclusion 29 Figures 30 Figure 1. 2.5% DSS acute colitis model induces human ulcerative colitis-like symptoms in female C57BL/6 mice. 30 Figure 2. 2.5% DSS acute colitis model shows similarities to human UC-like pathology and elevated inflammatory responses. 33 Figure 3. NETs were induced in 2.5% DSS acute colitis model and promoted cell death in colon tissue. 36 Figure 4. NET formations were reduced by DNase I i.v. injection and severity indexes of the colitis were ameliorated. 40 Figure 5. NET derived inflammation was attenuated by DNase I treatment. However, there was no difference in histopathological inflammation, only in the regeneration of the epithelium. 44 Figure 6. Increased intestinal permeability is correlated with NETs. 47 Figure 7. Mechanism graph of NET-mediated inflammation and intestinal permeability serve as detrimental factors in DSS acute colitis model. 48 Reference 50 | - |
| dc.language.iso | en | - |
| dc.subject | 嗜中性球 | zh_TW |
| dc.subject | 嗜中性球胞外網狀結構 | zh_TW |
| dc.subject | 發炎性腸道疾病 | zh_TW |
| dc.subject | 潰瘍性結腸炎 | zh_TW |
| dc.subject | 去氧核醣核酸? I | zh_TW |
| dc.subject | Neutrophil extracellular traps | en |
| dc.subject | Ulcerative colitis | en |
| dc.subject | Neutrophils | en |
| dc.subject | Deoxyribonuclease I | en |
| dc.subject | IBD | en |
| dc.title | 嗜中性球胞外網狀結構對DSS誘發小鼠結腸炎模式之影響 | zh_TW |
| dc.title | The Effect of Neutrophil Extracellular Traps on Acute DSS Colitis in Mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳青周;魏淑珍 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 嗜中性球,嗜中性球胞外網狀結構,發炎性腸道疾病,潰瘍性結腸炎,去氧核醣核酸? I, | zh_TW |
| dc.subject.keyword | Neutrophils,Neutrophil extracellular traps,IBD,Ulcerative colitis,Deoxyribonuclease I, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU201903476 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-15 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 11.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
