請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77217
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童世煌 | zh_TW |
dc.contributor.advisor | Shih-Huang Tung | en |
dc.contributor.author | 許博雅 | zh_TW |
dc.contributor.author | Po-Ya Hsu | en |
dc.date.accessioned | 2021-07-10T21:51:19Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] C.S. Chern, Emulsion polymerization mechanisms and kinetics, Progress in Polymer Science 31(5) (2006) 443-486.
[2] D.K. Garg, C.A. Serra, Y. Hoarau, D. Parida, M. Bouquey, R. Muller, Analytical solution of free radical polymerization: Applications- implementing gel effect using ak model, Macromolecules 47(21) (2014) 7370-7377. [3] A. El-hoshoudy, Emulsion polymerization mechanism, 2018. [4] Z. Ai, R. Deng, Q. Zhou, S. Liao, H. Zhang, High solid content latex: Preparation methods and application, Advances in Colloid and Interface Science 159(1) (2010) 45-59. [5] K.L. Hoy, R.H. Peterson, High solids latexes, US Patent number 4,130,523 (1978). [6] J. Schork, Control of polymerization reactors, Routledge, New York, 2017. [7] B. Liu, Y. Wang, M. Zhang, H. Zhang, Initiator systems effect on particle coagulation and particle size distribution in one-step emulsion polymerization of styrene, Polymers 8(2) (2016) 55. [8] M.E. Dobrowolska, G.J.M. Koper, Optimal ionic strength for nonionically initiated polymerization, Soft Matter 10(8) (2014) 1151-1154. [9] S. Carro, J. Herrera-Ordonez, J. Castillo-Tejas, On the evolution of the rate of polymerization, number and size distribution of particles in styrene emulsion polymerization above cmc, Journal of Polymer Science Part A: Polymer Chemistry 48(14) (2010) 3152-3160. [10] Z.-Q. Ai, Q.-L. Zhou, C.-S. Xie, H.-T. Zhang, In situ preparation and properties of high-solid-content and low-viscosity poly(methyl methacrylate/n-butyl acrylate/acrylic acid)/poly(styrene/acrylic acid) composite latexes, Journal of Applied Polymer Science 103(3) (2007) 1815-1825. [11] C.-S. Chern, S.-Y. Lin, L.-J. Chen, S.-C. Wu, Emulsion polymerization of styrene stabilized by mixed anionic and nonionic surfactants, Polymer 38(8) (1997) 1977-1984. [12] S. Feiz, A.H. Navarchian, Emulsion polymerization of styrene: Simulation the effects of mixed ionic and non-ionic surfactant system in the presence of coagulation, Chemical Engineering Science 69(1) (2012) 431-439. [13] M. Schneider, C. Graillat, A. Guyot, T.F. McKenna, High solids content emulsions. Ii. Preparation of seed latices, Journal of Applied Polymer Science 84(10) (2002) 1897-1915. [14] J. Zeaiter, J. Romagnoli, G. Barton, V. Gomes, B. Hawkett, R. Gilbert, Operation of semi-batch emulsion polymerisation reactors: Modelling, validation and effect of operating conditions, Chemical Engineering Science 57(15) (2002) 2955-2969. [15] I. Benedek, Pressure-sensitive adhesives and applications, CRC Press, New York, 2004. [16] C. Creton, Pressure-sensitive adhesives: An introductory course, MRS Bulletin 28(6) (2011) 434-439. [17] I. Khan, B.T. Poh, Natural rubber-based pressure-sensitive adhesives: A review, Journal of Polymers and the Environment 19(3) (2011) 793. [18] L. Ding, F. Huang, C.-M. Kuo, Z. Liu, Emulsion type silicone pressure sensitive adhesive composition and process for the production thereof, US Patent number 10 ,077,387 B2 (2018). [19] L. Qie, M.A. Dubé, The influence of butyl acrylate/methyl methacrylate/2-hydroxy ethyl methacrylate/acrylic acid latex properties on pressure sensitive adhesive performance, International Journal of Adhesion and Adhesives 30(7) (2010) 654-664. [20] F. Deplace, C. Carelli, S. Mariot, H. Retsos, A. Chateauminois, K. Ouzineb, C. Creton, Fine tuning the adhesive properties of a soft nanostructured adhesive with rheological measurements, The Journal of Adhesion 85(1) (2009) 18-54. [21] M.-F. Tse, Studies of triblock copolymer-tackifying resin interactions by viscoelasticity and adhesive performance, Journal of Adhesion Science and Technology 3(1) (1989) 551-570. [22] T.R. Ewert, A.M. Mannion, M.L. Coughlin, C.W. Macosko, F.S. Bates, Influence of rheology on renewable pressure-sensitive adhesives from a triblock copolymer, Journal of Rheology 62(1) (2018) 161-170. [23] T. Oyamada, C. Tomizawa, M. Domoto, S. Narisawa, Pressure-sensitive adhesive and vinyl acetate-ethylene copolymer emulsion useful as base material therefor, US Patent number 4,128,518 (1978). [24] Z. Czech, R. Kurzawa, Acrylic pressure-sensitive adhesive for transdermal drug delivery systems, Journal of Applied Polymer Science 106(4) (2007) 2398-2404. [25] A. Yasui, Y. Toyama, M. Nagata, T. Kimura, M. Satake, Pressure-sensitive adhesive composition for optical film, pressure-sensitive adhesive layer for optical film, pressure-sensitive adhesive optical film, and image display device, US Patent number 10,266,629 B2 (2019). [26] A. Yasui, Y. Toyama, T. Ishii, M. Fujita, T. Kimura, M. Satake, S. Goto, T. Kitagawa, M. Miyatake, T. Mori, T. Kamijo, Pressure-sensitive adhesive for applying optically functional film, optically functional film and production process for the same, US Patent number 8,388,798 B2 (2013). [27] R. Jovanović, M.A. Dubé, Emulsion‐based pressure‐sensitive adhesives: A review, Journal of Macromolecular Science, Part C 44(1) (2004) 1-51. [28] M. Bhowmick, T. Sengodan, T. Sivakumar, Evaluation and characterization of transdermal therapeutic systems: An exhaustive pictorial and figurative review, 4 (2014) 9-22. [29] A. Sekulic, Experimental identification of adhesive properties between epoxy and glass, These de Doctorat de l’Ecole Polytechnique Fédérale de Lausanne2008. [30] S. Patel, A. Bandyopadhyay, A. Ganguly, A.K. Bhowmick, Synthesis and properties of nanocomposite adhesives, Journal of Adhesion Science and Technology 20(4) (2006) 371-385. [31] A.B. Foster, P.A. Lovell, M.A. Rabjohns, Control of adhesive properties through structured particle design of water-borne pressure-sensitive adhesives, Polymer 50(7) (2009) 1654-1670. [32] M.D. Gower, R.A. Shanks, Acrylic acid level and adhesive performance and peel master-curves of acrylic pressure-sensitive adhesives, Journal of Polymer Science Part B: Polymer Physics 44(8) (2006) 1237-1252. [33] T. Wang, E. Canetta, T.G. Weerakkody, J.L. Keddie, U. Rivas, pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid, ACS applied materials & interfaces 1(3) (2009) 631-639. [34] J. Kajtna, J. Golob, M. Krajnc, The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives, International Journal of Adhesion and Adhesives 29(2) (2009) 186-194. [35] L. Qie, M.A. Dubé, Manipulation of chain transfer agent and cross-linker concentration to modify latex micro-structure for pressure-sensitive adhesives, European Polymer Journal 46(6) (2010) 1225-1236. [36] A. Bellamine, E. Degrandi, M. Gerst, R. Stark, C. Beyers, C. Creton, Design of nanostructured waterborne adhesives with improved shear resistance, Macromolecular Materials and Engineering 296(1) (2011) 31-41. [37] S.D. Tobing, A. Klein, Molecular parameters and their relation to the adhesive performance of acrylic pressure-sensitive adhesives, Journal of Applied Polymer Science 79(12) (2001) 2230-2244. [38] M. Soleimani, S. Khan, D. Mendenhall, W. Lau, M.A. Winnik, Effect of molecular weight distribution on polymer diffusion during film formation of two-component high-/low-molecular weight latex particles, Polymer 53(13) (2012) 2652-2663. [39] S. Ugur, M.S. Sunay, Investigation of particle size effect on film formation of polystyrene latexes using fluorescence technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects 510 (2016) 283-292. [40] J. Wu, J.P. Tomba, M.A. Winnik, R. Farwaha, J. Rademacher, Effect of gel content on polymer diffusion in poly(vinyl acetate-co-dibutyl maleate) latex films, Macromolecules 37(11) (2004) 4247-4253. [41] M. do Amaral, A. Roos, J.M. Asua, C. Creton, Assessing the effect of latex particle size and distribution on the rheological and adhesive properties of model waterborne acrylic pressure-sensitive adhesives films, Journal of Colloid and Interface Science 281(2) (2005) 325-338. [42] J. Charmeau, E. Kientz, Y. Holl, Adhesion of latex films; influence of surfactants, Progress in Organic Coatings 27(1-4) (1996) 87-93. [43] E. Temelkaya Bilgin, C. Akarsu Dülgar, İ.E. Serhatlı, Incorporation of vinyl silane and epoxy silane oligomer into 2-eha-based polyacrylate latexes via mini-emulsion polymerization and investigation of pressure-sensitive adhesive properties on polar and nonpolar surfaces, Polymer Bulletin (2019). [44] B. D. Ratner, A. Hoffman, Physicochemical surface modification of materials used in medicine, 2013. [45] U. Schubert, Chemistry and fundamentals of the sol–gel process, The Sol‐Gel Handbook (2015) 1-28. [46] H. Pingan, J. Mengjun, Z. Yanyan, H. Ling, A silica/pva adhesive hybrid material with high transparency, thermostability and mechanical strength, RSC Advances 7(5) (2017) 2450-2459. [47] N. Wang, Y. Guo, H. Xu, X. Liu, L. Zhang, X. Qu, L. Zhang, Preparation of a silica/poly(n-butyl acrylate-co-acrylic acid) composite latex and its pressure-sensitive properties, Journal of Applied Polymer Science 113(5) (2009) 3113-3124. [48] B.D. Ratner, A.S. Hoffman, Chapter i.2.12 - physicochemical surface modification of materials used in medicine, Biomaterials science Academic Press2013, pp. 259-276. [49] J. Alongi, M. Ciobanu, G. Malucelli, Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: Optimisation of the process and evaluation of the durability, Cellulose 18(1) (2011) 167-177. [50] V. Starov, V. Zhdanov, M. Meireles, C. Molle, Viscosity of concentrated suspensions: Influence of cluster formation, Advances in Colloid and Interface Science 96(1) (2002) 279-293. [51] I. González, J.M. Asua, J.R. Leiza, The role of methyl methacrylate on branching and gel formation in the emulsion copolymerization of ba/mma, Polymer 48(9) (2007) 2542-2547. [52] M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, Journal of the American Chemical Society 77(14) (1955) 3701-3707. [53] W. Yu, R. Li, C. Zhou, Rheology and phase separation of polymer blends with weak dynamic asymmetry, Polymer 52(12) (2011) 2693-2700. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77217 | - |
dc.description.abstract | 本研究以半批次乳化聚合之方式來製備核-殼(core-shell)壓克力感壓膠,並藉由調整甲基丙烯酸甲酯(methyl methacrylate, MMA)及丙烯酸丁酯(butyl acrylate, BA)的比例來製備硬核跟軟殼。我們製備了不同硬核比例之乳液,並探討其轉化率、形貌、乳液顆粒及粒徑分布隨反應時間的變化。透過調整轉化率及降低起始劑用量,成功製備出核-殼乳液。乳液塗佈成黏膠之後,我們將研究其黏膠之玻璃轉移溫度、黏彈性、凝膠與溶膠分子量及感壓膠之物性測試,我們發現隨著硬核的比例提高,黏膠的彈性模數上升,但同時也造成黏著力下降,除了黏膠本身的機械性質之外,其膜的表面型態也會大幅影響黏著性。另外,添加矽烷化合物如3-環氧丙氧丙基三甲氧基矽烷((3-Glycidoxypropyl)trimethoxysilane, GPTMS)及四乙氧基矽烷(tetraethyl orthosilicate, TEOS)也可以大幅提升其初期力及黏著力。 | zh_TW |
dc.description.abstract | In this study, we synthesized core-shell latexes via a semi-batch polymerization process with different methyl methacrylate/butyl acrylate (MMA/BA) weight ratio on hard-core and soft-shell, respectively. We produced different amount of hard core of the latexes and investigated the conversion, morphology, particle size and particle size distribution of the latexes during different reaction time. The successful core-shell latex was synthesized by adjusting the conversion and lowering the initiator concentration. The glass transition temperature, viscoelasticity, gel and molecular weight of sol and performance of pressure sensitive adhesives (PSA) films cast from these latexes were also discussed. With increased hard-core content in the PSA films, the elastic modulus of PSA films increased but led to a decrease in peeling strength. We also found that not just the mechanical properties of PSA, but also the morphology of the PSA films was related to the peeling strength. Furthermore, the addition of silicone-based components (e.g. (3-glycidoxypropyl)trimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS)) to the PSA films showed significantly improvement on the tack and peeling strength. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:19Z (GMT). No. of bitstreams: 1 ntu-108-R06549012-1.pdf: 3245768 bytes, checksum: 688330ad8d6b5f6578b3e0e8a481dff9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 IX 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 第 2 章 文獻回顧 3 2.1 乳化聚合簡介 3 2.1.1 乳化聚合反應及動力學 4 2.1.2 乳液顆粒大小及粒徑分布之影響因素 6 2.2 感壓膠 9 2.2.1 感壓膠簡介 9 2.2.2 初期力、黏著力及剪切強度 11 2.2.3 影響感壓膠物性之因素 13 2.2.4 核殼結構之黏膠 15 2.2.5 矽烷化合物對黏膠性質之影響 17 第 3 章 實驗方法與儀器 20 3.1 實驗藥品 20 3.2 實驗配方及步驟 22 3.2.1 製備C-0、C-5及C-10乳液 23 3.2.2 製備C-10G乳液 25 3.2.3 乳液添加矽烷化合物 27 3.2.4 乳液性質分析及實驗儀器 28 第 4 章 實驗結果與討論 32 4.1 乳液性質分析 32 4.1.1 C-0乳液 32 4.1.2 C-5乳液 35 4.1.3 C-10乳液 38 4.1.4 C-10G乳液 40 4.2 感壓膠性質分析 44 4.2.1 玻璃轉移溫度之分析 44 4.2.2 感壓膠之凝膠(gel)與溶膠(sol) 49 4.2.3 感壓膠之流變性質 50 4.2.4 感壓膠之黏膠物性測試 56 4.3 添加矽烷化合物的影響 59 4.3.1 矽烷化合物對乳液之影響 59 4.3.2 矽烷化合物對感壓膠之黏彈性影響 60 4.3.3 矽烷化合物對感壓膠物性測試之影響 62 第 5 章 結論 64 第 6 章 附錄 65 6.1.1 起始劑濃度於批次反應之影響 65 6.1.2 整體起始劑濃度及轉化率對半批次聚合的之影響 67 第 7 章 參考文獻 70 | - |
dc.language.iso | zh_TW | - |
dc.title | 以乳化聚合製備之核-殼壓克力感壓膠性質分析 | zh_TW |
dc.title | Study on Water-Borne Core-Shell Acrylic Pressure Sensitive Adhesives | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭如忠;戴子安;邱文英 | zh_TW |
dc.contributor.oralexamcommittee | Ru-Jong Jeng;Chi-An Dai;Wen-Yen Chiu | en |
dc.subject.keyword | 感壓膠,乳化聚合,核-殼乳液,玻璃轉移溫度,矽烷化合物, | zh_TW |
dc.subject.keyword | pressure sensitive adhesives,emulsion polymerization,core-shell latex,glass transition temperature,silicone-based component, | en |
dc.relation.page | 75 | - |
dc.identifier.doi | 10.6342/NTU201903798 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。