請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77213完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥榮 | zh_TW |
| dc.contributor.advisor | Edward Chern | en |
| dc.contributor.author | 邱鈺惠 | zh_TW |
| dc.contributor.author | Yu-Hui Chiu | en |
| dc.date.accessioned | 2021-07-10T21:51:10Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1 Balkwill, F. R., Capasso, M. & Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 125, 5591-5596, doi:10.1242/jcs.116392 (2012).
2 Chen, L., Endler, A. & Shibasaki, F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp. Mol. Med. 41, 849-857, doi:10.3858/emm.2009.41.12.103 (2009). 3 Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver's seat. Nature Reviews Cancer 17, 577, doi:10.1038/nrc.2017.77 (2017). 4 San-Millán, I. & Brooks, G. A. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38, 119-133, doi:10.1093/carcin/bgw127 (2017). 5 Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677-684, doi:10.1038/nm0603-677 (2003). 6 Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117-1133, doi:10.1177/1947601911423654 (2011). 7 Karsch-Bluman, A. et al. Tissue necrosis and its role in cancer progression. Oncogene 38, 1920-1935, doi:10.1038/s41388-018-0555-y (2019). 8 Pollheimer, M. J. et al. Tumor necrosis is a new promising prognostic factor in colorectal cancer. Hum. Pathol. 41, 1749-1757, doi:https://doi.org/10.1016/j.humpath.2010.04.018 (2010). 9 Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650-1659, doi:10.1056/nejm198612253152606 (1986). 10 Srikrishna, G. & Freeze, H. H. Endogenous Damage-Associated Molecular Pattern Molecules at the Crossroads of Inflammation and Cancer. Neoplasia 11, 615-628, doi:10.1593/neo.09284 (2009). 11 Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798-809, doi:10.1038/nrc2734 (2009). 12 Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715, doi:10.1038/ni.2060 (2011). 1 Balkwill, F. R., Capasso, M. & Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 125, 5591-5596, doi:10.1242/jcs.116392 (2012). 2 Chen, L., Endler, A. & Shibasaki, F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp. Mol. Med. 41, 849-857, doi:10.3858/emm.2009.41.12.103 (2009). 3 Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver's seat. Nature Reviews Cancer 17, 577, doi:10.1038/nrc.2017.77 (2017). 4 San-Millán, I. & Brooks, G. A. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38, 119-133, doi:10.1093/carcin/bgw127 (2017). 5 Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677-684, doi:10.1038/nm0603-677 (2003). 6 Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117-1133, doi:10.1177/1947601911423654 (2011). 7 Karsch-Bluman, A. et al. Tissue necrosis and its role in cancer progression. Oncogene 38, 1920-1935, doi:10.1038/s41388-018-0555-y (2019). 8 Pollheimer, M. J. et al. Tumor necrosis is a new promising prognostic factor in colorectal cancer. Hum. Pathol. 41, 1749-1757, doi:https://doi.org/10.1016/j.humpath.2010.04.018 (2010). 9 Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650-1659, doi:10.1056/nejm198612253152606 (1986). 10 Srikrishna, G. & Freeze, H. H. Endogenous Damage-Associated Molecular Pattern Molecules at the Crossroads of Inflammation and Cancer. Neoplasia 11, 615-628, doi:10.1593/neo.09284 (2009). 11 Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798-809, doi:10.1038/nrc2734 (2009). 12 Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715, doi:10.1038/ni.2060 (2011). 13 Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736-746, doi:10.1038/nrc3818 (2014). 14 Grivennikov, S. I. & Karin, M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21, 11-19, doi:10.1016/j.cytogfr.2009.11.005 (2010). 15 Hoesel, B. & Schmid, J. A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 12, 86, doi:10.1186/1476-4598-12-86 (2013). 16 Rinkenbaugh, A. L. & Baldwin, A. S. The NF-kappaB Pathway and Cancer Stem Cells. Cells 5, doi:10.3390/cells5020016 (2016). 17 Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Reviews Immunology 8, 279, doi:10.1038/nri2215 (2008). 18 Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4, e966, doi:10.1038/cddis.2013.493 (2013). 19 Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223, doi:10.1016/j.immuni.2013.02.003 (2013). 20 Lee, S. Y. et al. Regulation of Tumor Progression by Programmed Necrosis. Oxid. Med. Cell. Longev. 2018, 28, doi:10.1155/2018/3537471 (2018). 21 Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1-5, doi:10.1189/jlb.0306164 (2007). 22 Piccinini, A. M. & Midwood, K. S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, doi:10.1155/2010/672395 (2010). 23 Pradeu, T. & Cooper, E. L. The danger theory: 20 years later. Front. Immunol. 3, 287-287, doi:10.3389/fimmu.2012.00287 (2012). 24 Krysko, O., Love Aaes, T., Bachert, C., Vandenabeele, P. & Krysko, D. V. Many faces of DAMPs in cancer therapy. Cell Death Dis. 4, e631, doi:10.1038/cddis.2013.156 (2013). 25 Liu, Y. & Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother. 35, 299-308, doi:10.1097/CJI.0b013e3182518e83 (2012). 26 Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331-342, doi:10.1038/nri1594 (2005). 27 Kang, R., Zhang, Q., Zeh, H. J., 3rd, Lotze, M. T. & Tang, D. HMGB1 in cancer: good, bad, or both? Clin. Cancer. Res. 19, 4046-4057, doi:10.1158/1078-0432.CCR-13-0495 (2013). 28 Goodwin, G. H., Sanders, C. & Johns, E. W. A New Group of Chromatin-Associated Proteins with a High Content of Acidic and Basic Amino Acids. Eur. J. Biochem. 38, 14-19, doi:10.1111/j.1432-1033.1973.tb03026.x (1973). 29 Tang, D., Kang, R., Zeh, H. J., 3rd & Lotze, M. T. High-mobility group box 1 and cancer. Biochim. Biophys. Acta 1799, 131-140, doi:10.1016/j.bbagrm.2009.11.014 (2010). 30 Parkkinen, J. et al. Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J. Biol. Chem. 268, 19726-19738 (1993). 31 Andersson, U., Yang, H. & Harris, H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin. Immunol. 38, 40-48, doi:https://doi.org/10.1016/j.smim.2018.02.011 (2018). 32 Kang, R. et al. HMGB1 in health and disease. Mol. Aspects Med. 40, 1-116, doi:https://doi.org/10.1016/j.mam.2014.05.001 (2014). 33 Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551-5560, doi:10.1093/emboj/cdg516 (2003). 34 Evankovich, J. et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J. Biol. Chem. 285, 39888-39897, doi:10.1074/jbc.M110.128348 (2010). 35 Fiuza, C. et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101, 2652-2660, doi:10.1182/blood-2002-05-1300 (2003). 36 Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195, doi:10.1038/nature00858 (2002). 37 Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. The Journal of Experimental Medicine 209, 551-563, doi:10.1084/jem.20111739 (2012). 38 Chen, Y.-C. et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci. Rep. 6, 18815, doi:10.1038/srep18815 (2016). 39 Sharma, S., Evans, A. & Hemers, E. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res. 365, 357-366, doi:10.1007/s00441-016-2389-7 (2016). 40 Tirone, M. et al. High mobility group box 1 orchestrates tissue regeneration via CXCR4. The Journal of Experimental Medicine, doi:10.1084/jem.20160217 (2017). 41 Lee, G. et al. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proceedings of the National Academy of Sciences 115, E4463-E4472, doi:10.1073/pnas.1802893115 (2018). 42 He, S. J. et al. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 8, 64534-64550, doi:10.18632/oncotarget.17885 (2017). 43 Chen, Y., Lin, C., Liu, Y. & Jiang, Y. HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2. Tumour Biol. 37, 4399-4408, doi:10.1007/s13277-015-4049-z (2016). 44 Jube, S. et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 72, 3290-3301, doi:10.1158/0008-5472.CAN-11-3481 (2012). 45 Li, Q. et al. Overexpression of HMGB1 in melanoma predicts patient survival and suppression of HMGB1 induces cell cycle arrest and senescence in association with p21 (Waf1/Cip1) up-regulation via a p53-independent, Sp1-dependent pathway. Oncotarget 5, 6387-6403, doi:10.18632/oncotarget.2201 (2014). 46 Yue, Y. et al. High mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling promotes progression of gastric cancer. Tumour Biol. 39, 1010428317694312, doi:10.1177/1010428317694312 (2017). 47 Sasahira, T., Akama, Y., Fujii, K. & Kuniyasu, H. Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch. 446, 411-415, doi:10.1007/s00428-005-1210-x (2005). 48 van Beijnum, J. R., Buurman, W. A. & Griffioen, A. W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11, 91-99, doi:10.1007/s10456-008-9093-5 (2008). 49 van Beijnum, J. R. et al. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32, 363-374, doi:10.1038/onc.2012.49 (2013). 50 Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J. & Rauvala, H. Receptor for Advanced Glycation End Products-binding COOH-terminal Motif of Amphoterin Inhibits Invasive Migration and Metastasis. Cancer Res. 62, 4805-4811 (2002). 51 Taguchi, A. et al. Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354, doi:10.1038/35012626 (2000). 52 Yan, W. et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863-1875, doi:10.1002/hep.25572 (2012). 53 Chung, H. W., Jang, S., Kim, H. & Lim, J.-B. Combined targeting of high-mobility group box-1 and interleukin-8 to control micrometastasis potential in gastric cancer. Int. J. Cancer 137, 1598-1609, doi:doi:10.1002/ijc.29539 (2015). 54 Luo, Y. et al. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur. J. Cancer 49, 741-751, doi:10.1016/j.ejca.2012.09.016 (2013). 55 He, S. et al. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis. 9, 648, doi:10.1038/s41419-018-0626-6 (2018). 56 Huang, C.-Y. et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis. 9, 1004, doi:10.1038/s41419-018-1019-6 (2018). 57 Zuo, Z. et al. High mobility group Box-1 inhibits cancer cell motility and metastasis by suppressing activation of transcription factor CREB and nWASP expression. Oncotarget 5, 7458-7470, doi:10.18632/oncotarget.2150 (2014). 58 Gdynia, G. et al. Danger signaling protein HMGB1 induces a distinct form of cell death accompanied by formation of giant mitochondria. Cancer Res. 70, 8558-8568, doi:10.1158/0008-5472.CAN-10-0204 (2010). 59 Gdynia, G. et al. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun 7, 10764, doi:10.1038/ncomms10764 (2016). 60 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34, doi:10.3322/caac.21551 (2019). 61 Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in colorectal cancer. Gastrointestinal cancer research : GCR 5, 19-27 (2012). 62 Tan, B. T., Park, C. Y., Ailles, L. E. & Weissman, I. L. The cancer stem cell hypothesis: a work in progress. Lab. Invest. 86, 1203-1207, doi:10.1038/labinvest.3700488 (2006). 63 Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nature Reviews Cancer 13, 727, doi:10.1038/nrc3597 (2013). 64 Eyler, C. E. & Rich, J. N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 26, 2839-2845, doi:10.1200/JCO.2007.15.1829 (2008). 65 Yu, Z., Pestell, T. G., Lisanti, M. P. & Pestell, R. G. Cancer stem cells. The international journal of biochemistry & cell biology 44, 2144-2151, doi:10.1016/j.biocel.2012.08.022 (2012). 66 Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486-498, doi:10.1016/j.stem.2011.04.007 (2011). 67 Wu, Z.-Q. et al. Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc. Natl. Acad. Sci. U. S. A. 109, 11312-11317, doi:10.1073/pnas.1203015109 (2012). 68 de Sousa e Melo, F. & Vermeulen, L. Wnt Signaling in Cancer Stem Cell Biology. Cancers (Basel) 8, 60, doi:10.3390/cancers8070060 (2016). 69 Zhao, X. L. et al. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J. Pathol. 243, 376-389, doi:10.1002/path.4958 (2017). 70 Zhao, C.-B. et al. Co-expression of RAGE and HMGB1 is associated with cancer progression and poor patient outcome of prostate cancer. Am. J. Cancer Res. 4, 369-377 (2014). 71 Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N. & Rauvala, H. Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukocyte Biol. 81, 49-58, doi:doi:10.1189/jlb.0306200 (2007). 72 Youn, J. H., Oh, Y. J., Kim, E. S., Choi, J. E. & Shin, J. S. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J. Immunol. 180, 5067-5074, doi:10.4049/jimmunol.180.7.5067 (2008). 73 Lin, Q. et al. Production of recombinant human HMGB1 and anti-HMGB1 rabbit serum. Int. Immunopharmacol. 11, 646-651, doi:10.1016/j.intimp.2011.01.005 (2011). 74 Tegel, H., Tourle, S., Ottosson, J. & Persson, A. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expression Purif. 69, 159-167, doi:https://doi.org/10.1016/j.pep.2009.08.017 (2010). 75 Aleporou-Marinou, V. et al. A High Mobility Group Protein from the Dipteran Insects Ceratitis capitata and Bactrocera oleae. Biochem. Genet. 41, 235-243, doi:10.1023/a:1025558318077 (2003). 76 Gaillard, C., Borde, C., Gozlan, J., Marechal, V. & Strauss, F. A high-sensitivity method for detection and measurement of HMGB1 protein concentration by high-affinity binding to DNA hemicatenanes. PLoS One 3, e2855, doi:10.1371/journal.pone.0002855 (2008). 77 Zimmermann, K. et al. Native Versus Recombinant High-Mobility Group B1 Proteins: Functional Activity In Vitro. Inflammation 28, 221-229, doi:10.1023/B:IFLA.0000049047.61014.e3 (2004). 78 Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25-38, doi:10.1016/j.cell.2012.12.012 (2013). 79 Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285-296, doi:10.1016/j.cell.2004.07.013 (2004). 80 Kang, R. et al. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res. 27, 916, doi:10.1038/cr.2017.51 (2017). 81 Hernandez, C. et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. The Journal of Clinical Investigation 128, 2436-2451, doi:10.1172/JCI91786 (2018). 82 Maeda, S. et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem. Biophys. Res. Commun. 360, 394-400, doi:https://doi.org/10.1016/j.bbrc.2007.06.065 (2007). 83 Hoppe, G., Talcott, K. E., Bhattacharya, S. K., Crabb, J. W. & Sears, J. E. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp. Cell Res. 312, 3526-3538, doi:https://doi.org/10.1016/j.yexcr.2006.07.020 (2006). 84 Tang, D. et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29, 5299-5310, doi:10.1038/onc.2010.261 (2010). 85 Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209, 1519-1528, doi:10.1084/jem.20120189 (2012). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77213 | - |
| dc.description.abstract | 癌細胞的進程與其微環境密切相關,腫瘤組織快速生長的特性會導致腫瘤細胞容易遭遇到低氧、營養缺乏等逆境,造成細胞死亡。由於臨床上常可見到腫瘤組織的壞死現象,腫瘤微環境的壓力是有利於癌細胞存活,抑或是癌細胞先天上的生存弱點,值得深入研究。細胞壞死會釋出內部分子引起發炎反應,其中,損傷相關分子模式 (Damage-associated molecular patterns, DAMPs) 是一群內生型可引起免疫反應的誘導物。高遷移率族蛋白1 (high-mobility group box 1, HMGB1) 被認為是細胞死亡時主要釋放出來的損傷相關分子,並經常在癌症組織中存在。細胞外的 HMGB1 具有細胞激素與趨化因子等活性,故參與許多發炎相關疾病的調控;然而在癌症相關文獻中, HMGB1 卻扮演促癌與抑癌雙重角色,顯示其功能尚未完全明瞭。
在我的研究中,希望找出癌細胞周邊環境的 HMGB1 對其自身的影響。為了探討胞外 HMGB1 對癌細胞的效應,本研究利用大腸桿菌 RosettaTM (DE3) 建構 His-HMGB1 表達與純化系統,可獲得純度高之重組蛋白,同時也利用真核細胞 HEK293FT 過量表現方式取得含有HMGB1 蛋白質的細胞萃取物。實驗結果發現,胞外的 HMGB1 具有促進大腸癌細胞 NF-κB 及 Wnt 訊息的活性,然而卻會抑制癌細胞的爬行能力與球體形成能力。 HMGB1 對癌細胞的調控可能和其轉譯後修飾有關,也是造成現有文獻報導促癌、抑癌相互矛盾的原因之一,若能更加明白 HMGB1 蛋白的修飾情形,則有助於預測其功能,因而在癌症醫學上可以視其作用擬定最適合的治療方案。 | zh_TW |
| dc.description.abstract | The progression of cancer is profoundly affected by its microenvironment. As tumors are rapid growing mass, cells inside tumor bulk may encounter adversities such as hypoxia and nutrient deprivation, which may cause cell death. Whether stress-induced cell death is advantageous for cancer cell survival or harmful as the innate vulnerability is an issue worth studying. Clinically, necrosis is typically seen in cancer tissues. During necrosis, intracellular molecules are passively released outside,triggering inflammation. Damage-associated molecular patterns (DAMPs) are endogenous inducers of inflammation which vary in categories and functions. One of the DAMPs, high-mobility group box 1 (HMGB1) protein is thought to be the major factor released by necrotic cells. Extracellular HMGB1 possesses cytokine and chemokine activities, thus participating in inflammation-associated diseases. The research about HMGB1 in cancer, however, revealed both its pro-tumor and anti-tumor roles. Therefore, the function of HMGB1 still remains to be clarified.
In this study, I aim to investigate how HMGB1 in the extracellular environment affects cancer cell properties. His-HMGB1 was produced in RosettaTM (DE3) E. coli strain and purified through affinity chromatography. HMGB1-overexpressing HEK293FT cell line was also constructed to obtain HMGB1 of eukaryotic origin. Extracellular HMGB1 was shown to activate NF-κB and Wnt activity in colorectal cancer cells; nevertheless, HMGB1 treatment may inhibit cancer cell migration and sphereforming ability. The effect of HMGB1 on cancer cells seems to has a lot to do with its post-translational modifications, which possibly leads to the pro-tumor and anti-tumor inconsistency in experimental results. The understanding of HMGB1 protein modifications would help predict its function. As a consequence, depending on the function of HMGB1 in cancer tissues, a suitable treatment strategy could be determined to combat cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:51:10Z (GMT). No. of bitstreams: 1 ntu-108-R06b22010-1.pdf: 4597904 bytes, checksum: b514781bb2bc56ae7f55cbb808fc8204 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 英文縮寫對照表 VII 第一章 背景介紹 1 1.1 腫瘤微環境 (Tumor microenvironment) 1 1.2 發炎與癌症 2 1.3 損傷相關分子模式 (Damage-associated molecular pattern, DAMP) 3 1.4 高遷移率族蛋白1 (High-mobility group box 1, HMGB1) 4 1.5 結直腸癌 (Colorectal cancer) 7 1.6 癌症幹細胞 (Cancer stem cells, CSCs) 7 1.7 高遷移率族蛋白1與癌幹細胞 9 第二章 研究動機與目的 10 第三章 材料與方法 11 3.1 質體建構 (Plasmid construction) 11 3.2 組胺酸標籤之高遷移率族蛋白1 (His-HMGB1) 表現與純化 11 3.3 細胞培養 (Cell culture) 13 3.4 RNA抽取 13 3.5 反轉錄聚合酶鏈反應 (Reverse transcription PCR, RT-PCR) 13 3.6 定量即時聚合酶鏈反應 (Quantitative real-time PCR, qPCR) 14 3.7 蛋白質抽取與西方墨點法 (Western blot) 14 3.8 細胞轉染 (Cell transfection) 及凍融法獲取細胞萃取物 15 3.9 冷光素酶報導基因測定 (Luciferase reporter assay) 15 3.10 細胞爬行試驗 (Cell migration assay) 15 3.11 細胞球體形成試驗 (Sphere forming assay) 16 3.12 統計分析 16 第四章 研究結果 17 4.1 HMGB1 及其受體 (receptor) 於結直腸癌細胞株中的表現 17 4.2 決定能最佳生產 His-HMGB1 的菌株和誘導條件 17 4.3 His-HMGB1 於大腸桿菌系統的純化 18 4.4 His-HMGB1 具有引起細胞發炎的能力 18 4.5 His-HMGB1 可能促進 Wnt 訊息活性 18 4.6 His-HMGB1 可能促進癌幹細胞相關基因的表現 19 4.7 His-HMGB1 降低結直腸癌細胞爬行能力與球體形成能力 19 4.8 以 HEK293FT 取得真核來源之 HMGB1 19 4.9 真核來源之 HMGB1 引起細胞發炎能力不顯著 20 4.10 真核來源之 HMGB1 可能促進 Wnt 訊息活性 20 4.11 真核來源之 HMGB1 降低細胞爬行與球體形成能力 21 第五章 討論與總結 22 5.1 大腸桿菌純化系統評估 22 5.2 HMGB1 自身引起發炎的能力可能不高 23 5.3 HMGB1 對 Wnt 訊息的影響 24 5.4 HMGB1 抑制大腸癌細胞惡化表徵 25 5.5 HMGB1 轉譯後修飾可能影響對癌細胞的功能 25 5.6 總結與展望 26 第六章 附表與結果圖 27 表一 使用引子列表 27 表二 使用抗體列表 28 圖一 HMGB1 及其受體於結直腸癌細胞株中的表現 29 圖二 決定最佳表現菌株及誘導條件優化 30 圖三 His-HMGB1 蛋白純化結果 33 圖四 His-HMGB1 提升 NF-κB 活性及發炎相關基因表現 34 圖五 His-HMGB1 提升 Wnt 活性及其下游基因表現 36 圖六 His-HMGB1 提升癌幹細胞相關基因表現 37 圖七 His-HMGB1 抑制細胞爬行能力與球體形成能力 39 圖八 真核來源之 HMGB1 可能提升 NF-κB 及 Wnt 活性 41 圖九 真核來源之 HMGB1 抑制細胞爬行能力與球體形成能力 42 第七章 參考文獻 43 附錄 期刊格式英文稿 i | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 損傷相關分子模式 | zh_TW |
| dc.subject | 高遷移率族蛋白1 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | Wnt 訊息 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | colorectal cancer | en |
| dc.subject | tumor microenvironment | en |
| dc.subject | inflammation | en |
| dc.subject | damageassociated molecular pattern (DAMP) | en |
| dc.subject | high-mobility group box 1 (HMGB1) | en |
| dc.subject | Wnt signaling | en |
| dc.title | 胞外 HMGB1 於大腸癌細胞之角色探討 | zh_TW |
| dc.title | An investigation of the role of extracellular HMGB1 in colorectal cancer cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖憶純;黃楓婷 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chun Liao;Feng-Ting Huang | en |
| dc.subject.keyword | 大腸癌,腫瘤微環境,發炎,損傷相關分子模式,高遷移率族蛋白1,Wnt 訊息, | zh_TW |
| dc.subject.keyword | colorectal cancer,tumor microenvironment,inflammation,damageassociated molecular pattern (DAMP),high-mobility group box 1 (HMGB1),Wnt signaling, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU201903668 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-16 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
