請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77203完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑文 | |
| dc.contributor.author | Wei-Lun Huang | en |
| dc.contributor.author | 黃偉倫 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:50:43Z | - |
| dc.date.available | 2021-07-10T21:50:43Z | - |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | Laupland KB, Church DL. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 2014;27:647-64.
2. Pogue JM, Kaye KS, Cohen DA, Marchaim D. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. Clin Microbiol Infect 2015;21:302-12. 3. Wang J-T, Chang S-C, Chang F-Y, Fung C-P, Chuang Y-C, Chen Y-S, Shiau Y-R, Tan M-C, Wang H-Y, Lai J-F, Huang IW, Yang Lauderdale T-L. Antimicrobial Non-Susceptibility of Escherichia coli from Outpatients and Patients Visiting Emergency Rooms in Taiwan. PloS one 2015;10:e0144103-e. 4. Lin W-P, Wang J-T, Chang S-C, Chang F-Y, Fung C-P, Chuang Y-C, Chen Y-S, Shiau Y-R, Tan M-C, Wang H-Y, Lai J-F, Huang IW, Lauderdale T-L. The Antimicrobial Susceptibility of Klebsiella pneumoniae from Community Settings in Taiwan, a Trend Analysis. Sci Rep 2016;6:36280-. 5. Carrara E, Pfeffer I, Zusman O, Leibovici L, Paul M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents 2018;51:548-53. 6. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644-55. 7. Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, Gonzalez MD, Jerris RC, Kehl SC, Patel R, Pritt BS, Richter SS, Robinson-Dunn B, Schwartzman JD, Snyder JW, Telford S, 3rd, Theel ES, Thomson RB, Jr., Weinstein MP, Yao JD. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 2018;67:e1-e94. 8. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40. 9. Morin CA, Hadler JL. Population-based incidence and characteristics of community-onset Staphylococcus aureus infections with bacteremia in 4 metropolitan Connecticut areas, 1998. J Infect Dis 2001;184:1029-34. 10. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ. Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002;137:791-7. 11. Valles J, Calbo E, Anoro E, Fontanals D, Xercavins M, Espejo E, Serrate G, Freixas N, Morera MA, Font B, Bella F, Segura F, Garau J. Bloodstream infections in adults: importance of healthcare-associated infections. J Infect 2008;56:27-34. 12. Al-Hasan MN, Eckel-Passow JE, Baddour LM. Impact of healthcare-associated acquisition on community-onset Gram-negative bloodstream infection: a population-based study: healthcare-associated Gram-negative BSI. Eur J Clin Microbiol Infect Dis 2012;31:1163-71. 13. Son JS, Song JH, Ko KS, Yeom JS, Ki HK, Kim SW, Chang HH, Ryu SY, Kim YS, Jung SI, Shin SY, Oh HB, Lee YS, Chung DR, Lee NY, Peck KR. Bloodstream infections and clinical significance of healthcare-associated bacteremia: a multicenter surveillance study in Korean hospitals. J Korean Med Sci 2010;25:992-8. 14. Shorr AF, Tabak YP, Killian AD, Gupta V, Liu LZ, Kollef MH. Healthcare-associated bloodstream infection: A distinct entity? Insights from a large U.S. database. Crit Care Med 2006;34:2588-95. 15. Johannes RS. Epidemiology of early-onset bloodstream infection and implications for treatment. Am J Infect Control 2008;36:S171 e13-7. 16. Kollef MH, Zilberberg MD, Shorr AF, Vo L, Schein J, Micek ST, Kim M. Epidemiology, microbiology and outcomes of healthcare-associated and community-acquired bacteremia: a multicenter cohort study. J Infect 2011;62:130-5. 17. Filice GA, Van Etta LL, Darby CP, Fraser DW. Bacteremia in Charleston County, South Carolina. Am J Epidemiol 1986;123:128-36. 18. Sjoberg L, Fredlund H. Survey of blood culture isolates in an area of Sweden from 1980 to 1986. Eur J Clin Microbiol Infect Dis 1988;7:501-4. 19. Madsen KM, Schonheyder HC, Kristensen B, Sorensen HT. Secular trends in incidence and mortality of bacteraemia in a Danish county 1981-1994. APMIS 1999;107:346-52. 20. Laupland KB, Gregson DB, Flemons WW, Hawkins D, Ross T, Church DL. Burden of community-onset bloodstream infection: a population-based assessment. Epidemiol Infect 2007;135:1037-42. 21. Uslan DZ, Crane SJ, Steckelberg JM, Cockerill FR, 3rd, St Sauver JL, Wilson WR, Baddour LM. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Arch Intern Med 2007;167:834-9. 22. Skogberg K, Lyytikainen O, Ruutu P, Ollgren J, Nuorti JP. Increase in bloodstream infections in Finland, 1995-2002. Epidemiol Infect 2008;136:108-14. 23. Sogaard M, Norgaard M, Dethlefsen C, Schonheyder HC. Temporal changes in the incidence and 30-day mortality associated with bacteremia in hospitalized patients from 1992 through 2006: a population-based cohort study. Clin Infect Dis 2011;52:61-9. 24. Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A, Lamagni T, Chronias A, Sheridan E. Trends among pathogens reported as causing bacteraemia in England, 2004-2008. Clin Microbiol Infect 2011;17:451-8. 25. Skogberg K, Lyytikainen O, Ollgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect 2012;18:E170-6. 26. Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect 2013;19:492-500. 27. Laupland KB, Kibsey PC, Gregson DB, Galbraith JC. Population-based laboratory assessment of the burden of community-onset bloodstream infection in Victoria, Canada. Epidemiol Infect 2013;141:174-80. 28. Pitout JD, Church DL, Gregson DB, Chow BL, McCracken M, Mulvey MR, Laupland KB. Molecular epidemiology of CTX-M-producing Escherichia coli in the Calgary Health Region: emergence of CTX-M-15-producing isolates. Antimicrob Agents Chemother 2007;51:1281-6. 29. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159-66. 30. Wang JT, Chang SC, Chang FY, Fung CP, Chuang YC, Chen YS, Shiau YR, Tan MC, Wang HY, Lai JF, Huang IW, Yang Lauderdale TL. Antimicrobial Non-Susceptibility of Escherichia coli from Outpatients and Patients Visiting Emergency Rooms in Taiwan. PLoS One 2015;10:e0144103. 31. Lin WP, Wang JT, Chang SC, Chang FY, Fung CP, Chuang YC, Chen YS, Shiau YR, Tan MC, Wang HY, Lai JF, Huang IW, Lauderdale TL. The Antimicrobial Susceptibility of Klebsiella pneumoniae from Community Settings in Taiwan, a Trend Analysis. Sci Rep 2016;6:36280. 32. Pedersen G, Schonheyder HC, Sorensen HT. Source of infection and other factors associated with case fatality in community-acquired bacteremia--a Danish population-based cohort study from 1992 to 1997. Clin Microbiol Infect 2003;9:793-802. 33. Lee CC, Wang JL, Lee CH, Hung YP, Hong MY, Chang CM, Ko WC. Age-Related Trends in Adults with Community-Onset Bacteremia. Antimicrob Agents Chemother 2017;61:e01050-17. 34. Chiu CW, Li MC, Ko WC, Li CW, Chen PL, Chang CM, Lee NY, Lee CC. Clinical impact of Gram-negative nonfermenters on adults with community-onset bacteremia in the emergency department. J Microbiol Immunol Infect 2015;48:92-100. 35. Lin JN, Lai CH, Chen YH, Chang LL, Lu PL, Tsai SS, Lin HL, Lin HH. Characteristics and outcomes of polymicrobial bloodstream infections in the emergency department: A matched case-control study. Acad Emerg Med 2010;17:1072-9. 36. Chang TY, Lee CH, Liu JW. Clinical characteristics and risk factors for fatality in patients with bloodstream infections caused by glucose non-fermenting gram-negative Bacilli. J Microbiol Immunol Infect 2010;43:233-9. 37. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998;244:379-86. 38. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000;118:146-55. 39. Garrouste-Orgeas M, Timsit JF, Tafflet M, Misset B, Zahar JR, Soufir L, Lazard T, Jamali S, Mourvillier B, Cohen Y, De Lassence A, Azoulay E, Cheval C, Descorps-Declere A, Adrie C, Costa de Beauregard MA, Carlet J, Group OS. Excess risk of death from intensive care unit-acquired nosocomial bloodstream infections: a reappraisal. Clin Infect Dis 2006;42:1118-26. 40. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 2003;115:529-35. 41. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589-96. 42. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 2003;36:1418-23. 43. Lodise TP, Jr., Patel N, Kwa A, Graves J, Furuno JP, Graffunder E, Lomaestro B, McGregor JC. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51:3510-5. 44. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005;49:1306-11. 45. Anderson DJ, Engemann JJ, Harrell LJ, Carmeli Y, Reller LB, Kaye KS. Predictors of mortality in patients with bloodstream infection due to ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2006;50:1715-20. 46. Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Bilker WB, Lautenbach E. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum beta-lactamase-producing enterobacteriaceae: variability by site of infection. Arch Intern Med 2005;165:1375-80. 47. S. Bryan C, L. Reynolds K, R. Rev. Brenner E. Analysis of 1,186 Episodes of Gram-Negative Bacteremia in Non-University Hospitals: The Effects of Antimicrobial Therapy1983. 48. Kim SH, Park WB, Lee KD, Kang CI, Bang JW, Kim HB, Kim EC, Oh MD, Choe KW. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 2004;54:489-97. 49. Osih RB, McGregor JC, Rich SE, Moore AC, Furuno JP, Perencevich EN, Harris AD. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2007;51:839-44. 50. Scarsi KK, Feinglass JM, Scheetz MH, Postelnick MJ, Bolon MK, Noskin GA. Impact of inactive empiric antimicrobial therapy on inpatient mortality and length of stay. Antimicrob Agents Chemother 2006;50:3355-60. 51. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;43:304-77. 52. Foster RA, Troficanto C, Bookstaver PB, Kohn J, Justo JA, Al-Hasan MN. Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals. Antibiotics (Basel) 2019;8. 53. Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Combination therapy vs. monotherapy for Gram-negative bloodstream infection: matching by predicted prognosis. Int J Antimicrob Agents 2018;51:488-92. 54. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014:CD003344. 55. Ong DSY, Frencken JF, Klein Klouwenberg PMC, Juffermans N, van der Poll T, Bonten MJM, Cremer OL, consortium M. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients With Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin Infect Dis 2017;64:1731-6. 56. Drago L, De Vecchi E, Nicola L, Legnani D, Lombardi A, Gismondo MR. In vitro synergy and selection of resistance by fluoroquinolones plus amikacin or beta-lactams against extended-spectrum beta-lactamase-producing Escherichia coli. J Chemother 2005;17:46-53. 57. Drago L, De Vecchi E, Nicola L, Tocalli L, Gismondo MR. In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with beta-lactams and amikacin. J Antimicrob Chemother 2005;56:353-9. 58. Piccoli L, Guerrini M, Felici A, Marchetti F. In vitro and in vivo synergy of levofloxacin or amikacin both in combination with ceftazidime against clinical isolates of Pseudomonas aeruginosa. J Chemother 2005;17:355-60. 59. Al-Hasan MN, Wilson JW, Lahr BD, Thomsen KM, Eckel-Passow JE, Vetter EA, Tleyjeh IM, Baddour LM. Beta-lactam and fluoroquinolone combination antibiotic therapy for bacteremia caused by gram-negative bacilli. Antimicrob Agents Chemother 2009;53:1386-94. 60. Salomao R, Castelo Filho A, Pignatari AC, Wey SB. Nosocomial and community acquired bacteremia: variables associated with outcomes. Rev Paul Med 1993;111:456-61. 61. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Medical Care 2005;43:1130-9. 62. Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, Reller LB. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 1997;24:584-602. 63. Johannes RS. Epidemiology of early-onset bloodstream infection and implications for treatment. American Journal of Infection Control 2008;36:S171.e13-S.e17. 64. Retamar P, Portillo MM, Lopez-Prieto MD, Rodriguez-Lopez F, de Cueto M, Garcia MV, Gomez MJ, Del Arco A, Munoz A, Sanchez-Porto A, Torres-Tortosa M, Martin-Aspas A, Arroyo A, Garcia-Figueras C, Acosta F, Corzo JE, Leon-Ruiz L, Escobar-Lara T, Rodriguez-Bano J, Group SSB. Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrob Agents Chemother 2012;56:472-8. 65. Kumar A, Zarychanski R, Light B, Parrillo J, Maki D, Simon D, Laporta D, Lapinsky S, Ellis P, Mirzanejad Y, Martinka G, Keenan S, Wood G, Arabi Y, Feinstein D, Kumar A, Dodek P, Kravetsky L, Doucette S. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis*. Critical Care Medicine 2010;38:1773-85. 66. John E. Bennett RDMJB. Mandell, Douglas, and Bennett's principles and practice of infectious diseases: Eighth edition. Philadelphia, PA : Elsevier/Saunders, [2015]; 2015. 67. Troxler R, Funke G, von Graevenitz A, Stock I. Natural Antibiotic Susceptibility of Recently Established Coryneform Bacteria2001. 68. Fernández-Natal I, Sáez-Nieto JA, Medina-Pascual MJ, Albersmeier A, Valdezate S, Guerra-Laso JM, Rodríguez H, Marrodán T, Parras T, Tauch A, Soriano F. Dermabacter hominis: a usually daptomycin-resistant gram-positive organism infrequently isolated from human clinical samples. New Microbes New Infect 2013;1:35-40. 69. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Jr., Musher DM, Niederman MS, Torres A, Whitney CG, Infectious Diseases Society of A, American Thoracic S. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44 Suppl 2:S27-72. 70. Thønnings S, Knudsen JD, Schønheyder HC, Søgaard M, Arpi M, Gradel KO, Østergaard C, Østergaard C, Arpi M, Gradel KO, Jensen US, Thønnings S, Knudsen JD, Koch K, Pinholt M, Smit J, Schønheyder HC, Søgaard M. Antibiotic treatment and mortality in patients with Listeria monocytogenes meningitis or bacteraemia. Clinical Microbiology and Infection 2016;22:725-30. 71. Funke G, Pünter V, von Graevenitz A. Antimicrobial susceptibility patterns of some recently established coryneform bacteria. Antimicrob Agents Ch 1996;40:2874-8. 72. Asai N, Suematsu H, Yamada A, Watanabe H, Nishiyama N, Sakanashi D, Kato H, Shiota A, Hagihara M, Koizumi Y, Yamagishi Y, Mikamo H. Brevibacterium paucivorans bacteremia: case report and review of the literature. BMC Infectious Diseases 2019;19:344. 73. Van den Abeele A-M, Vogelaers D, Vanlaere E, Houf K. Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus strains isolated from Belgian patients. Journal of Antimicrobial Chemotherapy 2016;71:1241-4. 74. Dé I, Rolston K, Y Han X. Clinical Significance of Roseomonas Species Isolated from Catheter and Blood Samples: Analysis of 36 Cases in Patients with Cancer2004. 75. Wang C-M, Lai C-C, Tan C-K, Huang Y-C, Chung K-P, Lee M-R, Hwang K-P, Hsueh P-R. Clinical characteristics of infections caused by Roseomonas species and antimicrobial susceptibilities of the isolates. Diagnostic Microbiology and Infectious Disease 2012;72:199-203. 76. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A. Lactobacillus Bacteremia, Species Identification, and Antimicrobial Susceptibility of 85 Blood Isolates. Clinical Infectious Diseases 2006;42:e35-e44. 77. Löfmark S, Edlund C, Nord CE. Metronidazole Is Still the Drug of Choice for Treatment of Anaerobic Infections. Clinical Infectious Diseases 2010;50:S16-S23. 78. Karlowsky JA, Walkty AJ, Adam HJ, Baxter MR, Hoban DJ, Zhanel GG. Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother 2012;56:1247-52. 79. Rolfe RD, Finegold SM. Comparative in vitro activity of new beta-lactam antibiotics against anaerobic bacteria. Antimicrob Agents Ch 1981;20:600-9. 80. Lin JN, Tsai YS, Lai CH, Chen YH, Tsai SS, Lin HL, Huang CK, Lin HH. Risk factors for mortality of bacteremic patients in the emergency department. Acad Emerg Med 2009;16:749-55. 81. Chen HC, Lin WL, Lin CC, Hsieh WH, Hsieh CH, Wu MH, Wu JY, Lee CC. Outcome of inadequate empirical antibiotic therapy in emergency department patients with community-onset bloodstream infections. J Antimicrob Chemother 2013;68:947-53. 82. Chen WC, Chen YW, Ko HK, Yu WK, Yang KY. Comparisons of clinical features and outcomes between Elizabethkingia meningoseptica and other glucose non-fermenting Gram-negative bacilli bacteremia in adult ICU patients. J Microbiol Immunol Infect 2018. 83. Vidal F, Mensa J, Almela M, Olona M, Martinez JA, Marco F, Lopez MJ, Soriano A, Horcajada JP, Gatell JM, Richart C. Bacteraemia in adults due to glucose non-fermentative Gram-negative bacilli other than P. aeruginosa. QJM 2003;96:227-34. 84. Lin WP, Huang YS, Wang JT, Chen YC, Chang SC. Prevalence of and risk factor for community-onset third-generation cephalosporin-resistant Escherichia coli bacteremia at a medical center in Taiwan. BMC Infect Dis 2019;19:245. 85. Tan C, Smith RP, Srimani JK, Riccione KA, Prasada S, Kuehn M, You L. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol Syst Biol 2012;8:617. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77203 | - |
| dc.description.abstract | 研究背景
菌血症屬於嚴重的感染症,經驗性抗生素的適當與否將可能影響病人之臨床 結果。菌血症的來源、菌種分布與抗藥性情形是決定經驗性抗生素的重要因素。 與院內感染相比,社區發作型感染細菌的抗藥性程度較低,然近年研究發現社區 型感染的菌種(如 E. coli、Klebsiella spp.)的抗藥性比例有增加的趨勢,因此本 研究進行社區發作型(community-onset; CO)菌血症研究,並同時與醫院發作型 菌血症比較,分析菌種分佈、抗藥性,及所使用的抗生素,以做為臨床選用抗生 素之參考。 研究目的 比較社區發作型菌血症以及醫院發作型菌血症之菌種分佈、抗藥性分佈以及 抗生素使用情形,並著重於社區發作型菌血症之探討。 研究設計、地點及對象 本研究為回溯性研究,收納 2016 年 1 月 1 日至 2017 年 12 月 31 日期間,至 國立臺灣大學醫學院附設醫院(以下簡稱臺大醫院)進行血液培養且呈陽性的成 年病人,資料來源為臺大醫院整合醫學資料庫。 研究方法 由臺大醫院整合醫學資料庫收集病人的基本資料、共病症、過去醫療處置及 用藥、血液培養結果、抗生素感受性結果、本次使用的藥品,並與醫院發作型 (hospital-onset)菌血症相比較,同時分析社區發作型病人之抗生素適當性,以 及使用到不適當抗生素的風險因子。統計方法包括卡方檢定、Kruskal-Walis 檢 定、羅吉斯回歸,統計分析的軟題為 SAS(9.4 版),並以 Microsoft Excel 2016(Microsoft Crop., Redmond, WA, USA)輔以記錄。 研究結果 本研究最後總收案人數為 2542 人。社區發作型、醫院發作早發型、醫院發 作晚發型組別分別有 488 人、363 人、1691 人。社區發作型組別進一步分為社區 型(205 人)與醫療照護相關型組別(283 人)。社區型組別的 Charloson’s comorbidity index 分數最低(中位數:2 分,四分位距:0-4 分),醫療照護相關 型感染組別最高(6 分,四分位距:3-7 分)。固態腫瘤是各組最常見的共病症, 社區型組別比例最低(31.7%),醫療照護相關型組別最高(74.6%)。 社區發作型組別中,多重菌種感染的比例在社區型組別較醫療照護相關型組 別低(5.8% vs. 16.2%,P=0.0004)、在不具癌症的病人較具癌症病人的比例低 (7.6% vs. 14.3%,P=0.0219)。菌種比例依序為革蘭氏陰性菌(64%)、革蘭氏陽 性菌(31%)、厭氧菌(5%)。E. coli 是比例最高的菌種(21.2%),其次為 Klebsiella spp.(13.0%)、S. aureus(11.2%)。社區發作型 E. coli 與 Klebsiella spp. 對於 cefotaxime 的感受性比例分為 65.6%、75.3%,比例與醫院發作型病人,以及 病人是否具有惡性腫瘤分組比較未達統計顯著差異。 Cephalosporins 是社區發作型組別使用比例最高之經驗性抗生素(47.5%)。 使用多種抗生素的病人比例為 26.7%,該比例在社區型組別低於醫療照護相關型 組別(23.0% vs. 29.4%,P=0.0031),單一菌種與多重菌種感染、不具惡性腫瘤與 具惡性腫瘤組別的使用多種抗生素的比例則無顯著差異。社區發作型組別有 139 人(28.5%)使用到不適當的抗生素。使用到不適當抗生素的比例在社區型與醫 療照護相關型組別(30.2% vs. 27.2%,P=0.4782),以及不具/具有惡性腫瘤組別 (29.0% vs. 28.6%,P=1.0000)並無顯著差異,然而多重菌種菌血症使用到不適 當抗生素的比例顯著高於單一菌種菌血症病人(43.1% vs. 26.5%,P=0.0126)。多變項分析使用到不適當抗生素的因子中,使用多種抗生素為保護因子 (aOR=0.422);third-generation cephalosporin resistant E. coli, Klebsiella spp., Proteus spp., Enterobacter spp., Citrobacter spp.,(aOR=5.966)、enterococci (aOR=2.579),則為風險因子。 結論 各菌種在社區發作、醫院早發型、醫院晚發型有不同的分佈。本研究中,社 區發作型病人最常見的菌種為革蘭氏陰性菌(64%)。在革蘭氏陰性菌中,E. coli (33.4%)、Klebsiella spp.(20.5%)比例最高,顯示經驗性抗生素之抗菌範圍應 涵蓋 E. coli 與 Klebsiella spp.。然而,本研究社區發作型 E. coli、Klebsiella spp.對 於 cefotaxime 的感受性分別為 65.6%、75.3%。多變項分析發現病人若接受抗生素 多重療法,較會使用到適當之抗生素;若患 third-generation cephalosporin resistant E. coli, Klebsiella spp., Proteus spp., Enterobacter spp., Citrobacter spp.、enterococci 菌血症,則較會使用到不適當之抗生素。 | zh_TW |
| dc.description.abstract | Background
Bacteremia is one of the serious infections. Appropriateness of empirical therapy might affect patients’ clinical outcomes. Factors which may influence the choice of empirical therapy include patients’ infection focus and probable pathogens. Compared to nosocomial infection, pathogens from community settings usually have lower resistant rates. However, recent studies showed that there was a trend toward higher resistant rates in community pathogens such as E. coli and Klebsiella spp. Therefore, it is essential to conduct a study to analyze pathogen distribution, resistance patterns and antibiotics use in community-onset (CO) bacteremia. Study objective To describe and compare the patient characteristics, pathogen distribution, resistance patterns and antibiotic use between community-onset and hospital-onset bacteremia, and focus on the analysis of community-onset bacteremia. Study design and population Patients having at least 1 positive blood culture of bacteria in National Taiwan University Hospital (NTUH) between January, 2016 and December, 2018 were identified from the NTUH integrated medical database. Methods Data were collected from NTUH integrated medical database. Patients’ demographic profiles, comorbidities, previous medical status, previous drug use, blood culture and susceptibility test results, antibiotic regimens, appropriateness of antibiotic therapy and factors associated with inappropriate antibiotic use were analyzed. Statistical methods included Chi-square test, Kruskal-Walis test, logistic regression for uni- and multi- variate analysis, and were conducted via SAS 9.4 and Microsoft Excel 2016 (Microsoft Crop., Redmond, WA, USA). Results 2542 patients were included in the study. There were 488, 363, 1691 patients in CO group, hospital-onset early-onset (HOEO) group, and hospital-onset late onset (HOLO) group, respectively. CO group was further classified into community-acquired (CA) (205 patients) and healthcare-associated (HCA) groups (283 patients). CA group had the lowest Charloson’s comorbidity index (CCI) (median: 2; IQR: 0-4) while HCA group had the highest CCI (median: 6; IQR: 3-7). Solid organ tumor was the most prominent comorbidity in all groups. CA group had the lowest rate of solid tumor (31.7%) while HAC group had the highest rate (74.6%). In CO group, percentage of patients with poly-microbial bacteremia were lower in CA group compared to HCA group (5.8% vs. 16.2%, P=0.0004), and lower in patients without malignancy (7.6% vs. 14.3%, P=0.0219). Gram-negatives, gram-positives and anaerobes composed 64%, 31%, 5% of total isolates respectively. E. coli was the most common pathogens (21.2%), followed by Klebsiella spp. (13.0%) and S. aureus (11.2%). The susceptibility rate of E. coli and Klebsiella spp. to cefotaxime was 65.5% and 75.3% respectively, which did not show significant different compared to HOEO, HOLO groups and in patients with/without malignancy. Cephalosporins were the most prescribed empirical antibiotic in CO groups (47.5%). The percentage of patients receiving multi-drug was lower in CA group compared to HCA group (23.0% vs. 29.4%, P=0.0031), while there was no significant difference in mono-/poly-microbial bacteremia and in patients with/without malignancy. 139 (28.5%) patients in CO group received inappropriate antibiotics. The percentage of patients receiving inappropriate antibiotics was similar between CA/HCA groups and patients with/without malignancy, but was higher in patients with poly-microbial bacteremia compared to mono-microbial bacteremia (43.1% vs. 26.5%, P=0.0126). In multivariate analysis, multi-drug therapy (aOR=0.422) was a protective factor against receiving inappropriate antibiotics, while third-generation cephalosporin resistant E. coli, Klebsiella spp., Proteus spp., Enterobacter spp., Citrobacter spp. (aOR=5.966) and enterocci (aOR=2.579) were risk factors. Conclusion There were different patterns of distribution of pathogens among CO, HOEO and HOLO groups. Gram-negatives composed the majority of CO isolates (64%). E. coli (33.4%) and Klebsiella spp. (20.5%) were the most prevalent in Gram-negatives, suggesting that empirical therapy should cover these organisms. However, only 65.6% of E. coli and 75.3% of Klebsiella spp. were susceptible to cefotaxime in CO group. Multivariate analysis showed that multi-drug therapy was a protective factor against receiving inappropriate antibiotics, while patients with third-generation cephalosporin resistant E. coli, Klebsiella spp., Proteus spp., Enterobacter spp., Citrobacter spp., and enterocci were at risk of receiving inappropriate antibiotics. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:50:43Z (GMT). No. of bitstreams: 1 ntu-108-R06451006-1.pdf: 2209462 bytes, checksum: 72136c2c23ff51c6844f45be58be0ced (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract v 目錄 viii 圖目錄 x 表目錄 xi 第1章 前言 1 第2章 文獻回顧與探討 2 第一節 血流感染 2 第二節 社區發作型菌血症 7 第三節 抗生素治療 12 第3章 研究目的 15 第4章 研究方法 16 第一節 研究設計 16 第二節 研究時間、地點、對象 16 第三節 資料收集 17 第四節 名詞定義 20 第五節 統計分析 52 第5章 研究結果 53 第一節 研究流程 53 第二節 病人基本資料 55 第三節 共病症與過去醫療利用情形 56 第四節 菌血症嚴重情形 60 第五節 菌種分佈與抗生素感受性情形 62 第6章 討論 120 第一節 病人特性 120 第二節 菌種分佈以及感受性情形 124 第三節 抗生素使用 126 第四節 研究限制 127 第7章 結論 129 第8章 參考文獻 130 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗生素適當性 | zh_TW |
| dc.subject | 社區發作型菌血症 | zh_TW |
| dc.subject | 社區型菌血症 | zh_TW |
| dc.subject | 醫療照護相關型菌血症 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | healthcare-associated bacteremia | en |
| dc.subject | Community-onset bacteremia | en |
| dc.subject | community-acquired bacteremia | en |
| dc.subject | appropriateness of antibiotics | en |
| dc.subject | antimicrobial resistance | en |
| dc.title | 某醫學中心社區發作型菌血症之流行病學與處方型態分析 | zh_TW |
| dc.title | Epidemiology and Prescribing Patterns of Community-onset Bacteremia at a Medical Center | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宜君,蕭斐元 | |
| dc.subject.keyword | 社區發作型菌血症,社區型菌血症,醫療照護相關型菌血症,抗藥性,抗生素適當性, | zh_TW |
| dc.subject.keyword | Community-onset bacteremia,community-acquired bacteremia,healthcare-associated bacteremia,antimicrobial resistance,appropriateness of antibiotics, | en |
| dc.relation.page | 139 | |
| dc.identifier.doi | 10.6342/NTU201903666 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
| 顯示於系所單位: | 臨床藥學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06451006-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
