Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敬哲
dc.contributor.authorYan-Zhu Hsiehen
dc.contributor.author謝硯竹zh_TW
dc.date.accessioned2021-07-10T21:50:29Z-
dc.date.available2021-07-10T21:50:29Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation1. Arora, R., Lee, Y., Wischnewski, H., Brun, C.M., Schwarz, T., and Azzalin, C.M. (2014). RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 5, 5220.
2. Azzalin, C.M., and Lingner, J. (2008). Telomeres: the silence is broken. Cell Cycle 7, 1161-1165.
3. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798-801.
4. Balk, B., Maicher, A., Dees, M., Klermund, J., Luke-Glaser, S., Bender, K., and Luke, B. (2013). Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20, 1199-1205.
5. Barber, L.J., Ward, T.A., Hartley, J.A., and McHugh, P.J. (2005). DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Moll Cell Biol 25, 2297-2309.
6. Bardwell, A.J., Bardwell, L., Tomkinson, A.E., and Friedberg, E.C. (1994). Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 265, 2082-2085.
7. Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.-P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352.
8. Boule, J.-B., and Zakian, V.A. (2007). The yeast Pif1p DNA helicase preferentially unwinds RNA–DNA substrates. Nucleic Acids Res 35, 5809-5818.
9. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A., and Reddel, R.R. (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med 3, 1271-1274.
10. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R.R. (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14, 4240-4248.
11. Chan, C.S., and Tye, B.-K. (1983). Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573.
12. Chiarle, R., Zhang, Y., Frock, R.L., Lewis, S.M., Molinie, B., Ho, Y.-J., Myers, D.R., Choi, V.W., Compagno, M., and Malkin, D.J. (2011). Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107-119.
13. Choudhury, S.A., Asefa, B., Kauler, P., and Chow, T.Y.-K. (2007a). Synergistic effect of TRM2/RNC1 and EXO1 in DNA double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biochem 304, 127-134.
14. Choudhury, S.A., Asefa, B., Webb, A., Ramotar, D., and Chow, T.Y. (2007b). Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. Mol Cell Biochem 300, 215-226.
15. Cook, G.P., Tomlinson, I.M., Walter, G., Riethman, H., Carter, N.P., Buluwela, L., Winter, G., and Rabbitts, T.H. (1994). A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. Nat Genet 7, 162-168.
16. Colussi, C., Parlanti, E., Degan, P., Aquilina, G., Barnes, D., Macpherson, P., Karran, P., Crescenzi, M., Dogliotti, E., and Bignami, M. (2002). The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol 12, 912-918.
17. Counter, C.M., Meyerson, M., Eaton, E.N., and Weinberg, R.A. (1997). The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A 94, 9202-9207.
18. Deng, Z., Campbell, A.E., and Lieberman, P.M. (2010). TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 9, 69-74.
19. Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F., and Maizels, N. (2004). Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Gene Dev 18, 1618-1629.
20. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413.
21. Groh, M., and Gromak, N. (2014). Out of balance: R-loops in human disease. PLoS Genet 10, e1004630.
22. Hakin-Smith, V., Jellinek, D., Levy, D., Carroll, T., Teo, M., Timperley, W., McKay, M., Reddel, R., and Royds, J. (2003). Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361, 836-838.
23. Hardy, J., Churikov, D., Géli, V., and Simon, M.-N. (2014). Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Communs 5, 5004.
24. Harley, C.B., Futcher, A.B., and Greider, C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460.
25. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621.
26. Ho, C.K., Mazón, G., Lam, A.F., and Symington, L.S. (2010). Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell 40, 988-1000.
27. Ip, S.C., Rass, U., Blanco, M.G., Flynn, H.R., Skehel, J.M., and West, S.C. (2008). Identification of Holliday junction resolvases from humans and yeast. Nature 456, 357-361.
28. Ivanov, E.L., and Haber, J.E. (1995). RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Moll Cell Biol 15, 2245-2251.
29. Kim, H.-D., Choe, J., and Seo, Y.-S. (1999). The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697-14710.
30. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.d.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.
31. Lam, A.F., Krogh, B.O., and Symington, L.S. (2008). Unique and overlapping functions of the Exo1, Mre11 and Pso2 nucleases in DNA repair. DNA Repair 7, 655-662.
32. Le, S., Moore, J.K., Haber, J.E., and Greider, C.W. (1999). RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143-152.
33. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412.
34. Li, X., Hejna, J., and Moses, R.E. (2005). The yeast Snm1 protein is a DNA 5'-exonuclease. DNA Repair 4, 163-170.
35. Li, X., and Manley, J.L. (2006). Cotranscriptional processes and their influence on genome stability. Gene Dev 20, 1838-1847.
36. Linardopoulou, E., Mefford, H.C., Nguyen, O., Friedman, C., Van Den Engh, G., Farwell, D.G., Coltrera, M., and Trask, B.J. (2001). Transcriptional activity of multiple copies of a subtelomerically located olfactory receptor gene that is polymorphic in number and location. Hum Mol Genet 10, 2373-2383.
37. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567.
38. Lo, A.W., Sabatier, L., Fouladi, B., Pottier, G., Ricoul, M., and Mumane, J.P. (2002). DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 4, 531-538.
39. Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., and Lingner, J. (2008). The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32, 465-477.
40. Lundblad, V., and Blackburn, E.H. (1993). An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73, 347-360.
41. Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643.
42. Majka, J., and Burgers, P.M. (2003). Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A 100, 2249-2254.
43. Majka, J., Binz, S.K., Wold, M.S., and Burgers, P.M. (2006). Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. J Biol Chem 281, 27855-27861.
44. Maringele, L., and Lydall, D. (2004). EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics 166, 1641-1649.
45. McEachern, M.J., and Blackburn, E.H. (1994). A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci U S A 91, 3453-3457.
46. Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., and Wu, J.-R. (1988). A highly conserved repetitive DNA sequence,(TTAGGG) n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85, 6622-6626.
47. Nergadze, S.G., Farnung, B.O., Wischnewski, H., Khoriauli, L., Vitelli, V., Chawla, R., Giulotto, E., and Azzalin, C.M. (2009). CpG-island promoters drive transcription of human telomeres. RNA 15, 2186-2194.
48. Olovnikov, A.M. (1973). A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41, 181-190.
49. Pfeiffer, V., Crittin, J., Grolimund, L., and Lingner, J. (2013). The THO complex component Thp2 counteracts telomeric R‐loops and telomere shortening. EMBO J 32, 2861-2871.
50. Polak, P., and Arndt, P.F. (2008). Transcription induces strand-specific mutations at the 5' end of human genes. Genome Res 18, 1216-1223.
51. Reddel, R., Bryan, T., and Murnane, J. (1997). Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Msco) 62, 1254-1262.
52. Redon, S., Reichenbach, P., and Lingner, J. (2010). The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38, 5797-5806.
53. Riethman, H., Xiang, Z., Paul, S., Morse, E., Hu, X.-L., Flint, J., Chi, H.-C., Grady, D., and Moyzis, R. (2001). Integration of telomere sequences with the draft human genome sequence. Nature 409, 948-951.
54. Rizki, A., and Lundblad, V. (2001). Defects in mismatch repair promote telomerase-independent proliferation. Nature 411, 713-716.
55. Roberts, R.W., and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1466.
56. Roy, D., and Lieber, M.R. (2009). G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Moll Cell Biol 29, 3124-3133.
57. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.-L., and Lieber, M.R. (2010). Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Moll Cell Biol 30, 146-159.
58. Schoeftner, S., and Blasco, M.A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10, 228-236.
59. Shampay, J., Szostak, J.W., and Blackburn, E.H. (1984). DNA sequences of telomeres maintained in yeast. Nature 310, 154.
60. Shay, J., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791.
61. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409.
62. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
63. Stavenhagen, J.B., and Zakian, V.A. (1994). Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Gene Dev 8, 1411-1422.
64. Subhawong, A.P., Heaphy, C.M., Argani, P., Konishi, Y., Kouprina, N., Nassar, H., Vang, R., and Meeker, A.K. (2009). The alternative lengthening of telomeres phenotype in breast carcinoma is associated with HER-2 overexpression. Modern Pathol 22, 1423-1431.
65. Tadauchi, T., Inada, T., Matsumoto, K., and Irie, K. (2004). Posttranscriptional regulation of HO expression by the Mkt1-Pbp1 complex. Moll Cell Biol 24, 3670-3681.
66. Teng, S.-C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6, 947-952.
67. Teng, S.-C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Moll Cell Biol 19, 8083-8093.
68. Tiefenbach, T., and Junop, M. (2011). Pso2 (SNM1) is a DNA structure-specific endonuclease. Nucleic Acids Res 40, 2131-2139.
69. Tomkinson, A.E., Bardwell, A.J., Bardwell, L., Tappe, N.J., and Friedberg, E.C. (1993). Yeast DNA repair and recombination proteins Rad1 and Rad1O constitute a single-stranded-DNA endonuclease. Nature 362, 860-862.
70. Trask, B.J., Friedman, C., Martin-Gallardo, A., Rowen, L., Akinbami, C., Blankenship, J., Collins, C., Giorgi, D., Iadonato, S., and Johnson, F. (1998). Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7, 13-26.
71. Tuduri, S., Crabbé, L., Conti, C., Tourrière, H., Holtgreve-Grez, H., Jauch, A., Pantesco, V., De Vos, J., Thomas, A., and Theillet, C. (2009). Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11, 1315-1324.
72. Wahba, L., Amon, J.D., Koshland, D., and Vuica-Ross, M. (2011). RNase H and multiple RNA biogenesis factors cooperate to prevent RNA: DNA hybrids from generating genome instability. Mol Cell 44, 978-988.
73. Walmsley, R.W., Chan, C.S., Tye, B.-K., and Petes, T.D. (1984). Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157-160.
74. Watson, J.D. (1972). Origin of concatemeric T7DNA. Nat New Biol 239, 197-201.
75. Wellinger, R.E., Prado, F., and Aguilera, A. (2006). Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Moll Cell Biol 26, 3327-3334.
76. Wellinger, R.J., and Zakian, V.A. (2012). Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191, 1073-1105.
77. Yamada, M., Hayatsu, N., Matsuura, A., and Ishikawa, F. (1998). Y'-Help1, a DNA helicase encoded by the yeast subtelomeric Y' element, is induced in survivors defective for telomerase. J Biol Chem 273, 33360-33366.
78. Yehezkel, S., Segev, Y., Viegas-Pequignot, E., Skorecki, K., and Selig, S. (2008). Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17, 2776-2789.
79. Yeo, A.J., Becherel, O.J., Luff, J.E., Cullen, J.K., Wongsurawat, T., Jenjaroenpoon, P., Kuznetsov, V.A., McKinnon, P.J., and Lavin, M.F. (2014). R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS One 9, e90219.
80. Yu, T.-Y., Kao, Y.-w., and Lin, J.-J. (2014). Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A 111, 3377-3382.
81. Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77198-
dc.description.abstract端粒位於真核生物染色體末端區域,其功能對於保護染色體及維持基因成分相當重要。然而隨著細胞分裂次數增加,端粒會不斷地縮短,若不修復的話細胞會走入老化的階段(senescence)。端粒長度除了可以透過端粒酶調控之外,亦可藉由ALT (alternative lengthening of terlomeres)的途徑來維持,此機制是建立在同源重組的基礎上將端粒末端序列延長。在端粒酶缺失的酵母菌中可觀察到有一群細胞利用端粒重組(telomere recombination)的方式度過老化存活下來,他們可以透過端粒前方區域Y’ element (type I)或是末端的TG1-3片段(type II)來進行重組,使端粒長度得以維持。其中,Type II重組與人類的ALT癌細胞較為相似,然而目前對於端粒重組的機制仍不清楚。在我們先前的研究發現一種稱為TERRA的telomeric long-noncoding RNA會參與在端粒重組的過程中,TERRA會和端粒DNA形成RNA:DNA hybrid (R-loop),且在端粒酶缺失的酵母菌中TERRA會促使端粒重組的發生,因此我們想近一步探討TERRA到底是如何引發端粒重組。由於TERRA與端粒所形成之R-loop是一個很特殊的構造,有機會被細胞中具結構特異性之去氧核醣核酸酶(DNase)進行辨認並切割,進而調控端粒的重組。我利用基因剔除的技術在端粒酶缺失的酵母菌系統中發現DNA break repair nuclease Pso2、nucleotide excision repair nuclease Rad10和base-excicsion repair相關的核酸酶,包括了DNA N-glycosylases/AP lyases (Ntg1, Ntg2和 Ogg1), AP endonucleases (Apn1, Apn2) 以及DNA deadenylase Hnt3,這些基因對於端粒重組的發生影響不大。然而有趣的是,我們發現Holliday junction reslovase YEN1及MUS81可能在type I和type II survivor形成過程中扮演調控的角色,並且又以type II重組路徑中顯得更為重要。zh_TW
dc.description.abstractTelomeres are the terminal regions of eukaryotic linear chromosomes and they are essential for the maintenance of chromosome stability and genome integrity. After several replication events, telomeres will get shortened and cells can enter senescence. Telomere length could be maintained by telomerase or a recombination-based mechanism termed ALT (alternative lengthening of telomeres). In yeast Saccharomyces cerevisiae lacking telomerase, two types of recombination were used to maintain telomeres. Elongation of telomeres could be mediated through recombination between subtelomeric Y’ elements (Type I) or telomeric TG1-3 tracks (Type II), but these two recombination pathways are mediated through genetically-distinct mechanisms. The type II recombination pathway is similar to that observed in human ALT cells. Previously we found that a non-coding telomere transcript, TERRA, forms RNA:DNA hybrids to facilitate type II telomere recombination. However, the mechanism of how TERRA affects recombination is unclear. Since the RNA:DNA hybrid formed by TERRA is likely to form a R-loop structure, nuclease(s) that recognize and process the R loop structure might also function in telomeres. Here I use genetics approach to identify and test the role of nucleases that involved in telomere recombination. I found deletion of DNA break repair nuclease Pso2, nucleotide excision repair nuclease Rad10, and several nucleases involved in base-excision repair including, DNA N-glycosylases/AP lyases (Ntg1, Ntg2 and Ogg1), AP endonucleases (Apn1, Apn2) and DNA deadenylase Hnt3 did not affect type II recombination. Interestingly, deletion of YEN1 and/or MUS81, genes encoding two known Holliday junction resolvases, did not have an effect on telomere recombination but these nucleases might be involved in survivors formation regulation, and showed more significant effect on type II pathway.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:50:29Z (GMT). No. of bitstreams: 1
ntu-108-R06442009-1.pdf: 2407543 bytes, checksum: 24af0323cecb5ae598f2d9372b8e4463 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 i
附圖目錄 ii
摘要 1
英文摘要 2
前言 3
材料與方法 10
結果 25
討論 35
參考文獻 39
附圖 47
dc.language.isozh-TW
dc.subject長鏈非編碼核醣核酸TERRAzh_TW
dc.subject端粒zh_TW
dc.subject酵母菌zh_TW
dc.subject端粒重組zh_TW
dc.subject去氧核醣核酸?zh_TW
dc.subjecttelomere recombinationen
dc.subjectSaccharomyces cerevisiaeen
dc.subjectbudding yeasten
dc.subjectlncRNA TERRAen
dc.subjecttelomereen
dc.title探討酵母菌中去氧核糖核酸酶影響TERRA調控端粒重組之機制zh_TW
dc.titleMechanistic analysis of Saccharomyces cerevisiae DNases
in TERRA-mediated telomere recombination
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,冀宏源
dc.subject.keyword酵母菌,去氧核醣核酸?,長鏈非編碼核醣核酸TERRA,端粒,端粒重組,zh_TW
dc.subject.keywordSaccharomyces cerevisiae,budding yeast,lncRNA TERRA,telomere,telomere recombination,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201903906
dc.rights.note未授權
dc.date.accepted2019-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06442009-1.pdf
  未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved