請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77194
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹益慈 | zh_TW |
dc.contributor.advisor | Yi-Tsu Chan | en |
dc.contributor.author | 梁顏鵬 | zh_TW |
dc.contributor.author | Yen-Peng Liang | en |
dc.date.accessioned | 2021-07-10T21:50:19Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Matsuura, K. Synthetic Approaches to Construct Viral Capsid-like Spherical Nanomaterials. Chem. Commun. 2018, 54, 8944-8959.
2. Medrano, M.; Fuertes, M. Á.; Valbuena, A.; Carrillo, P. J. P.; Rodríguez-Huete, A.; Mateu, M. G. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid. J. Am. Chem. Soc. 2016, 138, 15385-15396. 3. Leininger, S.; Olenyuk, B.; Stang, P. J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100, 853-908. 4. Stang, P. J.; Olenyuk, B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Acc. Chem. Res. 1997, 30, 502-518. 5. Ma, Y.; Kolotuchin, S. V.; Zimmerman, S. C. Supramolecular Polymer Chemistry: Self-Assembling Dendrimers Using the DDA·AAD (GC-like) Hydrogen Bonding Motif. J. Am. Chem. Soc. 2002, 124, 13757-13769. 6. Newkome, G. R.; Moorefield, C. N.; Chakraborty, S. A Long Pathway to the Quantitative Assembly of Metallodendrimers. J. Inorg. Organomet. Polym. Mater. 2018, 28, 360-368. 7. Meier, M. A. R.; Wouters, D.; Ott, C.; Guillet, P.; Fustin, C.-A.; Gohy, J.-F.; Schubert ,U. S. Supramolecular ABA Triblock Copolymers via a Polycondensation Approach: Synthesis, Characterization, and Micelle Formation. Macromolecules 2006, 39, 1569-1576. 8. Papmeyer, M.; Vuilleumier, C. A.; Pavan, G. M.; Zhurov, K. O.; Severin, K. Molecularly Defined Nanostructures Based on a Novel AAA–DDD Triple Hydrogen-Bonding Motif. Angew. Chem., Int. Ed. 2016, 55, 1685-1689. 9. Reuther, J. F.; Dahlhauser, S. D.; Anslyn, E. V. Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angew. Chem., Int. Ed. 2019, 58, 74-85. 10. Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. A Highly Efficient Approach to the Self-Assembly of Hexagonal Cavity-cored Tris[2]pseudorotaxanes from Several Components via Multiple Noncovalent Interactions. J. Am. Chem. Soc. 2007, 129, 14187-14189. 11. Li, S.-L.; Xiao, T.; Lin, C.; Wang, L. Advanced Supramolecular Polymers Constructed by Orthogonal Self-Assembly. Chem. Soc. Rev. 2012, 41, 5950-5968. 12. Saha, M. L.; De, S.; Pramanik, S.; Schmittel, M. Orthogonality in Discrete Self-Assembly- Survey of Current Concepts. Chem. Soc. Rev. 2013, 42, 6860-6909. 13. Cook, T. R.; Stang, P. J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001-7045. 14. Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312, 251-254. 15. Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P. Turn-on Phosphorescence by Metal Coordination to a Multivalent Terpyridine Ligand: A New Paradigm for Luminescent Sensors. J. Am. Chem. Soc. 2014, 136, 6395-6400. 16. Sato, T.; Higuchi, M. An Alternately Introduced Heterometallo-Supramolecular Polymer: Synthesis and Solid-state Emission Switching by Electrochemical Redox. Chem. Commun. 2013, 49, 5256-5258. 17. Zheng, B.; Dong, H.; Bai, J.; Li, Y.; Li, S.; Scheer, M. Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand To Construct Coordination Assemblies: Experimental and Theoretical Studies. J. Am. Chem. Soc. 2008, 130, 7778-7779. 18. Constable, E. C.; Harris, K.; Housecroft, C. E.; Neuburger, M. When is a Metallopolymer not a Metallopolymer? When it is a Metallomacrocycle. Dalton Trans. 2011, 40, 1524-1534. 19. Kuehl, C. J.; Huang, S. D.; Stang, P. J. Self-assembly with Postmodification: Kinetically Stabilized Metalla-supramolecular Rectangles. J. Am. Chem. Soc. 2001, 123, 9634-9641. 20. Chifotides, H. T.; Giles, I. D.; Dunbar, K. R. Supramolecular Architectures with π-Acidic 3,6-Bis(2-pyridyl)-1,2,4,5-tetrazine Cavities: Role of Anion−π Interactions in the Remarkable Stability of Fe(II) Metallacycles in Solution. J. Am. Chem. Soc. 2013, 135, 3039-3055. 21. Liang, Y.-P.; Chan, Y.-T. Self-Assembly Methodologies for Rational Construction of Terpyridine-based Metallo-supramolecular Architectures. 化學 2018, 76, 243-253. 22. Kramer, R.; Lehn, J.-M.; Marquis-Rigault, A. Self-Recognition in Helicate Self-Assembly: Spontaneous Formation of Helical Metal Complexes from Mixtures of Ligands and Metal ions. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5394-5398. 23. Gaikwad, S.; Lal Saha, M.; Samanta, D.; Schmittel, M. Five-component Trigonal Nanoprism with Six Dynamic Corners. Chem. Commun. 2017, 53, 8034-8037. 24. Sun, Q.-F.; Iwasa, J.; Ogawa, D.; Ishido, Y.; Sato, S.; Ozeki, T.; Sei, Y.; Yamaguchi, K.; Fujita, M. Self-Assembled M24L48 Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation. Science 2010, 328, 1144-1147. 25. Zheng, Y.-R.; Zhao, Z.; Wang, M.; Ghosh, K.; Pollock, J. B.; Cook, T. R.; Stang, P. J. A Facile Approach toward Multicomponent Supramolecular Structures: Selective Self-Assembly via Charge Separation. J. Am. Chem. Soc. 2010, 132, 16873-16882. 26. Newkome, G. R.; Moorefield, C. N. From 1→3 Dendritic Designs to Fractal Supramacromolecular Constructs: Understanding the Pathway to the Sierpiński Gasket. Chem. Soc. Rev. 2015, 44, 3954-3967. 27. Schubert, U. S.; Winter, A.; Newkome, G. R., Front Matter. In Terpyridine-Based Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim: 2011. 28. Jiang, Z.; Li, Y.; Wang, M.; Liu, D.; Yuan, J.; Chen, M.; Wang, J.; Newkome, G. R.; Sun, W.; Li, X.; Wang, P. Constructing High-Generation Sierpiński Triangles by Molecular Puzzling. Angew. Chem., Int. Ed. 2017, 56, 11450-11455. 29. Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.; Bolarinwa, O.; Reese, R. A.; Zhang, T.; Wang, X.-Q.; Cai, J.; Xu, B.; Wang, M.; Liu, C.; Yang, H.-B.; Li, X. Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-shaped Supramolecules. J. Am. Chem. Soc. 2017, 139, 8174-8185. 30. Jiang, Z.; Li, Y.; Wang, M.; Song, B.; Wang, K.; Sun, M.; Liu, D.; Li, X.; Yuan, J.; Chen, M.; Guo, Y.; Yang, X.; Zhang, T.; Moorefield, C. N.; Newkome, G. R.; Xu, B.; Li, X.; Wang, P. Self-Assembly of a Supramolecular Hexagram and a Supramolecular Pentagram. Nat. Commun. 2017, 8, 15476. 31. Li, X.; Chan, Y.-T.; Casiano-Maldonado, M.; Yu, J.; Carri, G. A.; Newkome, G. R.; Wesdemiotis, C. Separation and Characterization of Metallosupramolecular Libraries by Ion Mobility Mass Spectrometry. Anal. Chem. 2011, 83, 6667-6674. 32. Ludlow III, J. M.; Tominaga, M.; Chujo, Y.; Schultz, A.; Lu, X.; Xie, T.; Guo, K.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Self-Assembly of a Family of Suprametallomacrocycles: Revisiting an o-Carborane Bisterpyridyl Building Block. Dalton Trans. 2014, 43, 9604-9611. 33. Chakraborty, S.; Endres, K. J.; Bera, R.; Wojtas, L.; Moorefield, C. N.; Saunders, M. J.; Das, N.; Wesdemiotis, C.; Newkome, G. R. Concentration Dependent Supramolecular Interconversions of Triptycene-based Cubic, Prismatic, and Tetrahedral Structures. Dalton Trans. 2018, 47, 14189-14194. 34. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810-6918. 35. Seidel, S. R.; Stang, P. J. High-Symmetry Coordination Cages via Self-Assembly. Acc. Chem. Res. 2002, 35, 972-983. 36. Ghosh, S.; Mukherjee, P. S. Self-Assembly of Metal-Organic Hybrid Nanoscopic Rectangles. Dalton Trans. 2007, 24, 2542-2546. 37. Zhao, L.; Northrop, B. H.; Zheng, Y.-R.; Yang, H.-B.; Lee, H. J.; Lee, Y. M.; Park, J. Y.; Chi, K.-W.; Stang, P. J. Self-Selection in the Self-Assembly of Isomeric Supramolecular Squares from Unsymmetrical Bis(4-pyridyl)acetylene Ligands. J. Org. Chem. 2008, 73, 6580-6586. 38. Saha, M. L.; Mittal, N.; Bats, J. W.; Schmittel, M. A Six-component Metallosupramolecular Pentagon via Self-Sorting. Chem. Commun. 2014, 50, 12189-12192. 39. Saha, M. L.; Bats, J. W.; Schmittel, M. Merging Strong and Weak Coordination Motifs in the Integrative Self-Sorting of a 5-Component Trapezoid and Scalene triangle. Org. Biomol. Chem. 2013, 11, 5592-5595. 40. Schultz, A.; Cao, Y.; Huang, M.; Cheng, S. Z. D.; Li, X.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Stable, Trinuclear Zn(II)- and Cd(II)-Metallocycles: TWIM-MS, Photophysical properties, and Nanofiber Formation. Dalton Trans. 2012, 41, 11573-11575. 41. Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and their Applications to Clusters and Biomolecules. J. Mass Spectrom. 1997, 32, 577-592. 42. Domalain, V.; Tognetti, V.; Hubert-Roux, M.; Lange, C. M.; Joubert, L.; Baudoux, J.; Rouden, J.; Afonso, C. Role of Cationization and Multimers Formation for Diastereomers Differentiation by Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1437-1445. 43. Domalain, V.; Hubert-Roux, M.; Lange, C. M.; Baudoux, J.; Rouden, J.; Afonso, C. Use of Tansition Mtals to Improve the Diastereomers Differentiation by Ion Mobility and Mass Spectrometry. J. Mass Spectrom. 2014, 49, 423-427. 44. Domalain, V.; Hubert-Roux, M.; Tognetti, V.; Joubert, L.; Lange, C. M.; Rouden, J.; Afonso, C. Enantiomeric Differentiation of Aromatic Amino Acids Using Traveling Wave Ion Mobility-Mass Spectrometry. Chem. Sci. 2014, 5, 3234-3239. 45. Lalli, P. M.; Iglesias, B. A.; Deda, D. K.; Toma, H. E.; de Sa, G. F.; Daroda, R. J.; Araki, K.; Eberlin, M. N. Resolution of Isomeric Multi-Ruthenated Porphyrins by Travelling Wave Ion Mobility Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 263-268. 46. Lalli, P. M.; Corilo, Y. E.; Fasciotti, M.; Riccio, M. F.; de Sa, G. F.; Daroda, R. J.; Souza, G. H. M. F.; McCullagh, M.; Bartberger, M. D.; Eberlin, M. N.; Campuzano, I. D. G. Baseline Resolution of Isomers by Traveling Wave Ion Mobility Mass Spectrometry: Investigating the Effects of Polarizable Drift Gases and Ionic Charge Distribution. J. Mass Spectrom. 2013, 48, 989-997. 47. Li, X.; Chan, Y.-T.; Newkome, G. R.; Wesdemiotis, C. Gradient Tandem Mass Spectrometry Interfaced with Ion Mobility Separation for the Characterization of Supramolecular Architectures. Anal. Chem. 2011, 83, 1284-1290. 48. Kawase, T.; Nishiyama, Y.; Nakamura, T.; Ebi, T.; Matsumoto, K.; Kurata, H.; Oda, M. Cyclic [5]Paraphenyleneacetylene: Synthesis, Properties, and Formation of a Ring-in-Ring Complex Showing a Considerably Large Association Constant and Entropy Effect. Angew. Chem., Int. Ed. 2007, 46, 1086-1088. 49. Forgan, R. S.; Friedman, D. C.; Stern, C. L.; Bruns, C. J.; Stoddart, J. F. Directed Self-Assembly of a Ring-in-Ring Complex. Chem. Commun. 2010, 46, 5861-5863. 50. Loren, J. C.; Yoshizawa, M.; Haldimann, R. F.; Linden, A.; Siegel, J. S. Synthetic Approaches to a Molecular Borromean Link: Two-Ring Threading with Polypyridine Templates. Angew. Chem., Int. Ed. 2003, 42, 5702-5705. 51. Klosterman, J. K.; Veliks, J.; Frantz, D. K.; Yasui, Y.; Loepfe, M.; Zysman-Colman, E.; Linden, A.; Siegel, J. S. Conformations of Large Macrocycles and Ring-in-Ring Complexes. Org. Chem. Front. 2016, 3, 661-666. 52. Wang, P.; Moorefield, C. N.; Newkome, G. R. Nanofabrication: Reversible Self-Assembly of an Imbedded Hexameric Metallomacrocycle within a Macromolecular Superstructure. Angew. Chem., Int. Ed. 2005, 44, 1679-1683. 53. Forgan, R. S.; Sauvage, J.-P.; Stoddart, J. F. Chemical Topology: Complex Molecular Knots, Links, and Entanglements. Chem. Rev. 2011, 111, 5434-5464. 54. Veliks, J.; Seifert, H. M.; Frantz, D. K.; Klosterman, J. K.; Tseng, J.-C.; Linden, A.; Siegel, J. S. Towards the Molecular Borromean Link with Three Unequal Rings: Double-Threaded Ruthenium(II) Ring-in-Ring Complexes. Org. Chem. Front. 2016, 3, 667-672. 55. Sun, B.; Wang, M.; Lou, Z.; Huang, M.; Xu, C.; Li, X.; Chen, L.-J.; Yu, Y.; Davis, G. L.; Xu, B.; Yang, H.-B.; Li, X. From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability. J. Am. Chem. Soc. 2015, 137, 1556-1564. 56. Bhat, I. A.; Samanta, D.; Mukherjee, P. S. A Pd24 Pregnant Molecular Nanoball: Self-Templated Stellation by Precise Mapping of Coordination Sites. J. Am. Chem. Soc. 2015, 137, 9497-9502. 57. Wu, T.; Yuan, J.; Song, B.; Chen, Y.-S.; Chen, M.; Xue, X.; Liu, Q.; Wang, J.; Chan, Y.-T.; Wang, P. Stepwise Self-Assembly of a Discrete Molecular Honeycomb Using a Multitopic Metallo-organic Ligand. Chem. Commun. 2017, 53, 6732-6735. 58. Wang, M.; Wang, C.; Hao, X.-Q.; Liu, J.; Li, X.; Xu, C.; Lopez, A.; Sun, L.; Song, M.-P.; Yang, H.-B.; Li, X. Hexagon Wreaths: Self-Assembly of Discrete Supramolecular Fractal Architectures Using Multitopic Terpyridine Ligands. J. Am. Chem. Soc. 2014, 136, 6664-6671. 59. Wang, M.; Wang, K.; Wang, C.; Huang, M.; Hao, X.-Q.; Shen, M.-Z.; Shi, G.-Q.; Zhang, Z.; Song, B.; Cisneros, A.; Song, M.-P.; Xu, B.; Li, X. Self-Assembly of Concentric Hexagons and Hierarchical Self-Assembly of Supramolecular Metal–Organic Nanoribbons at the Solid/Liquid Interface. J. Am. Chem. Soc. 2016, 138, 9258-9268. 60. Xie, T.-Z.; Guo, K.; Guo, Z.; Gao, W.-Y.; Wojtas, L.; Ning, G.-H.; Huang, M.; Lu, X.; Li, J.-Y.; Liao, S.-Y.; Chen, Y.-S.; Moorefield, C. N.; Saunders, M. J.; Cheng, S. Z. D.; Wesdemiotis, C.; Newkome, G. R. Precise Molecular Fission and Fusion: Quantitative Self-Assembly and Chemistry of a Metallo-Cuboctahedron. Angew. Chem., Int. Ed. 2015, 54, 9224-9229. 61. Xie, T.-Z.; Endres, K. J.; Guo, Z.; Ludlow, J. M.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Controlled Interconversion of Superposed-Bistriangle, Octahedron, and Cuboctahedron Cages Constructed Using a Single, Terpyridinyl-Based Polyligand and Zn2+. J. Am. Chem. Soc. 2016, 138, 12344-12347. 62. Mammen, M.; Choi, S.-K.; Whitesides, G. M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem., Int. Ed. 1998, 37, 2754-2794. 63. Chen, M.; Wang, J.; Chakraborty, S.; Liu, D.; Jiang, Z.; Liu, Q.; Yan, J.; Zhong, H.; Newkome, G. R.; Wang, P. Metallosupramolecular 3D Assembly of Dimetallic Zn4[RuL2]2 and Trimetallic Fe2Zn2[RuL2]2. Chem. Commun. 2017, 53, 11087-11090. 64. Sauvage, J.-P.; Gaspard, P., Index. In From Non-Covalent Assemblies to Molecular Machines, Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 467-478. 65. Williams, A. R.; Northrop, B. H.; Chang, T.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Suitanes. Angew. Chem., Int. Ed. 2006, 45, 6665-6669. 66. Northrop, B. H.; Aricó, F.; Tangchiavang, N.; Badjić, J. D.; Stoddart, J. F. Template-Directed Synthesis of Mechanically Interlocked Molecular Bundles Using Dynamic Covalent Chemistry. Org. Lett. 2006, 8, 3899-3902. 67. Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J. Pseudorotaxanes Formed Between Secondary Dialkylammonium Salts and Crown Ethers. Chem. -Eur. J. 1996, 2, 709-728. 68. Braunschweig, A. B.; Ronconi, C. M.; Han, J.-Y.; Aricó, F.; Cantrill, S. J.; Stoddart, J. F.; Khan, S. I.; White, A. J. P.; Williams, D. J. Pseudorotaxanes and Rotaxanes Formed by Viologen Derivatives. Eur. J. Org. Chem. 2006, 2006, 1857-1866. 69. Li, S.; Huang, J.; Cook, T. R.; Pollock, J. B.; Kim, H.; Chi, K.-W.; Stang, P. J. Formation of [3]Catenanes from 10 Precursors via Multicomponent Coordination-Driven Self-Assembly of Metallarectangles. J. Am. Chem. Soc. 2013, 135, 2084-2087. 70. Holyer, R. H.; Hubbard, C. D.; Kettle, S. F. A.; Wilkins, R. G. The Kinetics of Replacement Reactions of Complexes of the Transition Metals with 2,2':6',2'-Terpyridine. Inorg. Chem. 1966, 5, 622-625. 71. Lu, X.; Li, X.; Wang, J. L.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. From Supramolecular Triangle to Heteroleptic Rhombus: a Simple Bridge can Make a Difference. Chem. Commun. 2012, 48, 9873-9875. 72. Schultz, A.; Li, X.; Barkakaty, B.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Stoichiometric Self-Assembly of Isomeric, Shape-Persistent, Supramacromolecular Bowtie and Butterfly Structures. J. Am. Chem. Soc. 2012, 134, 7672-7675. 73. Wang, J. L.; Li, X.; Lu, X.; Hsieh, I. F.; Cao, Y.; Moorefield, C. N.; Wesdemiotis, C.; Cheng, S. Z. D.; Newkome, G. R. Stoichiometric Self-Assembly of Shape-persistent 2D Complexes: a Facile Route to a Symmetric Supramacromolecular Spoked Wheel. J. Am. Chem. Soc. 2011, 133, 11450-11453. 74. Hofmeier, H.; Schubert, U. S. Recent Developments in the Supramolecular Chemistry of Terpyridine–Metal Complexes. Chem. Soc. Rev. 2004, 33, 373-399. 75. Shen, C.; Wang, P.; Beves, J. E. New Ruthenium(II) Complexes of 2,2':6',2'-Terpyridine Derivatives as Supramolecular Building Blocks. Polyhedron 2016, 103, 241-247. 76. Mahata, K.; Schmittel, M. From 2-Fold Completive to Integrative Self-Sorting: A Five-component Supramolecular Trapezoid. J. Am. Chem. Soc. 2009, 131, 16544-16554. 77. Wang, S.-Y.; Huang, J.-Y.; Liang, Y.-P.; He, Y.-J.; Chen, Y.-S.; Zhan, Y.-Y.; Hiraoka, S.; Liu, Y.-H.; Peng, S.-M.; Chan, Y.-T. Multicomponent Self-Assembly of Metallo-Supramolecular Macrocycles and Cages through Dynamic Heteroleptic Terpyridine Complexation. Chem. -Eur. J. 2018, 24, 9274-9284. 78. Wu, T.; Chen, Y.-S.; Chen, M.; Liu, Q.; Xue, X.; Shen, Y.; Wang, J.; Huang, H.; Chan, Y.-T.; Wang, P. Metallo-Organic Ligand Designing Road for Constructing the First-Generation Dendritic Metallotriangle. Inorg. Chem. 2017, 56, 4065-4071. 79. Gu, Z.; Kanto, T.; Tsuchiya, K.; Shimomura, T.; Ogino, K. Annealing Effect on Performance and Morphology of Photovoltaic Devices Based on Poly(3-hexylthiophene)-b-Poly(ethylene oxide). J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2645-2652. 80. Chen, J.; Yu, X.; Hong, K.; Messman, J. M.; Pickel, D. L.; Xiao, K.; Dadmun, M. D.; Mays, J. W.; Rondinone, A. J.; Sumpter, B. G.; Kilbey Ii, S. M. Ternary Behavior and Systematic Nanoscale Manipulation of Domain Structures in P3HT/PCBM/P3HT-b-PEO films. J. Mater. Chem. 2012, 22, 13013-13022. 81. Shi, Y.; Li, F.; Chen, Y. Controlling Morphology and Improving the Photovoltaic Performances of P3HT/ZnO Hybrid Solar Cells via P3HT-b-PEO as an Interfacial Compatibilizer. New J. Chem. 2013, 37, 236-244. 82. Barboiu, M.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Kyritsakas, N.; Lehn, J.-M. Dynamic Chemical Devices: Modulation of Photophysical Properties by Reversible, Ion-Triggered, and Proton-Fuelled Nanomechanical Shape-Flipping Molecular Motions. Chem. -Eur. J. 2004, 10, 2953-2959. 83. Gohy, J.-F.; Lohmeijer, B. G. G.; Schubert, U. S. Metallo-Supramolecular Block Copolymer Micelles. Macromolecules 2002, 35, 4560-4563. 84. Lohmeijer, B. G. G.; Wouters, D.; Yin, Z.; Schubert, U. S. Block Copolymer Libraries: Modular Versatility of the Macromolecular Lego® system. Chem. Commun. 2004, 2886-2887. 85. Patra, S. K.; Ahmed, R.; Whittell, G. R.; Lunn, D. J.; Dunphy, E. L.; Winnik, M. A.; Manners, I. Cylindrical Micelles of Controlled Length with a π-Conjugated Polythiophene Core via Crystallization-Driven Self-Assembly. J. Am. Chem. Soc. 2011, 133, 8842-8845. 86. Liang, Y.-P.; He, Y.-J.; Lee, Y.-H.; Chan, Y.-T. Self-Assembly of Triangular Metallomacrocycles using Unsymmetrical Bisterpyridine Ligands: Isomer Differentiation via TWIM Mass Spectrometry. Dalton Trans. 2015, 44, 5139-5145. 87. Weilandt, T.; Troff, R. W.; Saxell, H.; Rissanen, K.; Schalley, C. A. Metallo-Supramolecular Self-Assembly: the Case of Triangle-Square Equilibria. Inorg. Chem. 2008, 47, 7588-7598. 88. Chan, Y.-T.; Li, X.; Soler, M.; Wang, J.-L.; Wesdemiotis, C.; Newkome, G. R. Self-Assembly and Traveling Wave Ion Mobility Mass Spectrometry Analysis of Hexacadmium Macrocycles. J. Am. Chem. Soc. 2009, 131, 16395-16397. 89. Wang, L.; Zhang, Z.; Jiang, X.; Irvin, J. A.; Liu, C.; Wang, M.; Li, X. Self-Assembly of Tetrameric and Hexameric Terpyridine-Based Macrocycles Using Cd(II), Zn(II), and Fe(II). Inorg. Chem. 2018, 57, 3548-3558. 90. Xie, T.-Z.; Wu, X.; Endres, K. J.; Guo, Z.; Lu, X.; Li, J.; Manandhar, E.; Ludlow, J. M.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Supercharged, Precise, Megametallodendrimers via a Single-Step, Quantitative, Assembly Process. J. Am. Chem. Soc. 2017, 139, 15652-15655. 91. Safont-Sempere, M. M.; Fernandez, G.; Wurthner, F. Self-Sorting Phenomena in Complex Supramolecular Systems. Chem. Rev. 2011, 111, 5784-814. 92. Saha, M. L.; Pramanik, S.; Schmittel, M. Spontaneous and Catalytic Fusion of Supramolecules. Chem. Commun. 2012, 48, 9459-9461. 93. Young, M. C.; Holloway, L. R.; Johnson, A. M.; Hooley, R. J. A Supramolecular Sorting Hat: Stereocontrol in Metal–Ligand Self-Assembly by Complementary Hydrogen Bonding. Angew. Chem., Int. Ed. 2014, 53, 9832-9836. 94. Brocker, E. R.; Anderson, S. E.; Northrop, B. H.; Stang, P. J.; Bowers, M. T. Structures of Metallosupramolecular Coordination Assemblies Can Be Obtained by Ion Mobility Spectrometry−Mass Spectrometry. J. Am. Chem. Soc. 2010, 132, 13486-13494. 95. Giles, K.; Pringle, S. D.; Worthington, K. R.; Little, D.; Wildgoose, J. L.; Bateman, R. H. Applications of a Travelling Wave-based Radio-Frequency-only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401-2414. 96. Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/oa-ToF Instrument. Int. J. Mass Spectrom. 2007, 261, 1-12. 97. Giles, K.; Williams, J. P.; Campuzano, I. Enhancements in Travelling Wave Ion Mobility Resolution. Rapid Commun. Mass Spectrom. 2011, 25, 1559-1566. 98. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The Power of Ion Mobility-Mass Spectrometry for Structural Characterization and the Study of Conformational Dynamics. Nat. Chem. 2014, 6, 281-294. 99. http://www.owlstonemedical.com/about/blog/2017/jun/28/ims-variant-guide/. 100. von Helden, G.; Kemper, P. R.; Gotts, N. G.; Bowers, M. T. Isomers of Small Carbon Cluster Anions: Linear Chains with up to 20 Atoms. Science 1993, 259, 1300-1302. 101. Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446-1451. 102. Aspley, C. J.; Gareth Williams, J. A. Palladium-Catalysed Cross-Coupling Reactions of Ruthenium bis-Terpyridyl Complexes: Strategies for the Incorporation and Exploitation of Boronic Acid Functionality. New J. Chem. 2001, 25, 1136-1147. 103. Jarosz, P.; Lotito, K.; Schneider, J.; Kumaresan, D.; Schmehl, R.; Eisenberg, R. Platinum(II) Terpyridyl-Acetylide Dyads and Triads with Nitrophenyl Acceptors via a Convenient Synthesis of a Boronated Phenylterpyridine. Inorg. Chem. 2009, 48, 2420-2428. 104. Monfardini, I.; Massi, L.; Tremel, P.; Hauville, A.; Olivero, S.; Dunach, E.; Gal, J.-F. Mass Spectrometric Characterization of Metal Triflates and Triflimides (Lewis Superacid Catalysts) by Electrospray Ionization and Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2611-2619. 105. Diaz-Torres, R.; Alvarez, S. Coordinating Ability of Anions and Solvents Towards Transition Metals and Lanthanides. Dalton Trans. 2011, 40, 10742-10750. 106. Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential. J. Phys. Chem. 1996, 100, 16082-16086. 107. Sibi, M. P.; Petrovic, G. Enantioselective Radical Reactions: the Use of Metal Triflimides as Lewis Acids. Tetrahedron: Asymmetry 2003, 14, 2879-2882. 108. Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion Mobility-Mass spectrometry Analysis of Large Protein Complexes. Nat. Protoc. 2008, 3, 1139-1152. 109. Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry. Anal. Chem. 2009, 81, 248-254. 110. Bush, M. F.; Campuzano, I. D. G.; Robinson, C. V. Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies. Anal. Chem. 2012, 84, 7124-7130. 111. Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure in Vacuo: Gas-Phase Conformations of BPTI and Cytochrome c. J. Am. Chem. Soc. 1997, 119, 2240-2248. 112. Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. Structural Characterization of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison of Theoretical and Experimentally Derived Nitrogen Collision Cross Sections. Anal. Chem. 2012, 84, 1026-1033. 113. Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B 1997, 101, 3891-3900. 114. Salbo, R.; Bush, M. F.; Naver, H.; Campuzano, I.; Robinson, C. V.; Pettersson, I.; Jørgensen, T. J. D.; Haselmann, K. F. Traveling-Wave Ion Mobility Mass Spectrometry of Protein Complexes: Accurate Calibrated Collision Cross-Sections of Human Insulin Oligomers. Rapid Commun. Mass Spectrom. 2012, 26, 1181-1193. 115. Chan, Y.-T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C. Design, Synthesis, and Traveling Wave Ion Mobility Mass Spectrometry Characterization of Iron(II)- and Ruthenium(II)-Terpyridine Metallomacrocycles. J. Am. Chem. Soc. 2011, 133, 11967-11976. 116. SCALE3 ABSPACK- An Oxford Diffraction program (1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd. 117. Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Determination 1997. 118. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure. 1997. 119. Poupon, J.-C.; Marcoux, D.; Cloarec, J.-M.; Charette, A. B. Removal, Recovery, and Recycling of Triarylphosphonium-Supported Tin Reagents for Various Organic Transformations. Org. Lett. 2007, 9, 3591-3594. 120. Mandelkow, E.; Mandelkow, E.-M.; Hotani, H.; Hess, B.; Muller, S. C. Spatial Patterns from Oscillating Microtubules. Science 1989, 246, 1291. 121. Fuchs, E.; Cleveland, D. W. A Structural Scaffolding of Intermediate Filaments in Health and Disease. Science 1998, 279, 514. 122. Utschig, L. M.; Thurnauer, M. C. Metal Ion Modulated Electron Transfer in Photosynthetic Proteins. Acc. Chem. Res. 2004, 37, 439-447. 123. Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Supramolecular Catalysis in Metal–Ligand Cluster Hosts. Chem. Rev. 2015, 115, 3012-3035. 124. Bloch, W. M.; Holstein, J. J.; Hiller, W.; Clever, G. H. Morphological Control of Heteroleptic cis- and trans-Pd2L2L'2 Cages. Angew. Chem., Int. Ed. 2017, 56, 8285-8289. 125. Meng, W.; Ronson, T. K.; Clegg, J. K.; Nitschke, J. R. Transformations within a Network of Cadmium Architectures. Angew. Chem., Int. Ed. 2012, 52, 1017-1021. 126. Freye, S.; Hey, J.; Torras-Galán, A.; Stalke, D.; Herbst-Irmer, R.; John, M.; Clever, G. H. Allosteric Binding of Halide Anions by a New Dimeric Interpenetrated Coordination Cage. Angew. Chem., Int. Ed. 2012, 51, 2191-2194. 127. Han, M.; Luo, Y.; Damaschke, B.; Gómez, L.; Ribas, X.; Jose, A.; Peretzki, P.; Seibt, M.; Clever, G. H. Light-Controlled Interconversion between a Self-Assembled Triangle and a Rhombicuboctahedral Sphere. Angew. Chem., Int. Ed. 2015, 55, 445-449. 128. Barboiu, M.; Stadler, A.-M.; Lehn, J.-M. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands. Angew. Chem., Int. Ed. 2016, 55, 4130-4154. 129. Wang, Y.-C.; Liang, Y.-P.; Cai, J.-Y.; He, Y.-J.; Lee, Y.-H.; Chan, Y.-T. Metal Ion-modulated Self-Assembly of pseudo-Suit[3]anes using Crown Ether-based Terpyridine Metalloprisms. Chem. Commun. 2016, 52, 12622-12625. 130. Reuther, J. F.; Dahlhauser, S. D.; Anslyn, E. V. Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angew. Chem., Int. Ed. 2018, 58, 74-85. 131. Riddell, I. A.; Hristova, Y. R.; Clegg, J. K.; Wood, C. S.; Breiner, B.; Nitschke, J. R. Five Discrete Multinuclear Metal-Organic Assemblies from One Ligand: Deciphering the Effects of Different Templates. J. Am. Chem. Soc. 2013, 135, 2723-2733. 132. Christinat, N.; Scopelliti, R.; Severin, K. Multicomponent Assembly of Boronic Acid Based Macrocycles and Cages. Angew. Chem., Int. Ed. 2008, 47, 1848-1852. 133. Black, S. P.; Stefankiewicz, A. R.; Smulders, M. M. J.; Sattler, D.; Schalley, C. A.; Nitschke, J. R.; Sanders, J. K. M. Generation of a Dynamic System of Three-Dimensional Tetrahedral Polycatenanes. Angew. Chem., Int. Ed. 2013, 52, 5749-5752. 134. Wei, P.; Yan, X.; Huang, F. Supramolecular Polymers Constructed by Orthogonal Self-Assembly based on Host-Guest and Metal-Ligand Interactions. Chem. Soc. Rev. 2015, 44, 815-832. 135. Joseph, R.; Nkrumah, A.; Clark, R. J.; Masson, E. Stabilization of Cucurbituril/Guest Assemblies via Long-Range Coulombic and CH···O Interactions. J. Am. Chem. Soc. 2014, 136, 6602-6607. 136. Li, S.; Huang, J.; Zhou, F.; Cook, T. R.; Yan, X.; Ye, Y.; Zhu, B.; Zheng, B.; Stang, P. J. Self-Assembly of Triangular and Hexagonal Molecular Necklaces. J. Am. Chem. Soc. 2014, 136, 5908-5911. 137. Castillo, D.; Astudillo, P.; Mares, J.; Gonzalez, F. J.; Vela, A.; Tiburcio, J. Chemically Controlled Self-Assembly of [2]Pseudorotaxanes Based on 1,2-bis(Benzimidazolium)ethane Cations and 24-crown-8 Macrocycles. Org. Biomol. Chem. 2007, 5, 2252-2256. 138. Loeb, S. J.; Tiburcio, J.; Vella, S. J. [2]Pseudorotaxane Formation with N-Benzylanilinium Axles and 24-Crown-8 Ether Wheels. Org. Lett. 2005, 7, 4923-4926. 139. Ludlow III, J. M.; Xie, T.; Guo, Z.; Guo, K.; Saunders, M. J.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Directed Flexibility: Self-Assembly of a Supramolecular Tetrahedron. Chem. Commun. 2015, 51, 3820-3823. 140. Ashton, P. R.; Campbell, P. J.; Glink, P. T.; Philp, D.; Spencer, N.; Stoddart, J. F.; Chrystal, E. J. T.; Menzer, S.; Williams, D. J.; Tasker, P. A. Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules. Angew. Chem., Int. Ed. 1995, 34, 1865-1869. 141. Li, C.; Xu, Q.; Li, J.; Feina, Y.; Jia, X. Complex Interactions of Pillar[5]arene with Paraquats and bis(Pyridinium) Derivatives. Org. Biomol. Chem. 2010, 8, 1568-1576. 142. Zhao, J.-M.; Zong, Q.-S.; Han, T.; Xiang, J.-F.; Chen, C.-F. Guest-Dependent Complexation of Triptycene-Based Macrotricyclic Host with Paraquat Derivatives and Secondary Ammonium Salts: A Chemically Controlled Complexation Process. J. Org. Chem. 2008, 73, 6800-6806. 143. Li, L.; Clarkson, G. J. New Bis(benzimidazole) Cations for Threading through Dibenzo-24-crown-8. Org. Lett. 2007, 9, 497-500. 144. Loeb, S. J.; Wisner, J. A. A New Motif for the Self-Assembly of [2]Pseudorotaxanes; 1,2-Bis(pyridinium)ethane Axles and [24]Crown-8 Ether Wheels. Angew. Chem., Int. Ed. 1998, 37, 2838-2840. 145. Shvartsburg, A. A.; Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 1996, 261, 86-91. 146. Kaller, M.; Staffeld, P.; Haug, R.; Frey, W.; Giesselmann, F.; Laschat, S. Substituted Crown Ethers as Central Units in Discotic Liquid Crystals: Effects of Crown Size and Cation Uptake. Liq. Cryst. 2011, 38, 531-553. 147. Uehling, M. R.; Suess, A. M.; Lalic, G. Copper-Catalyzed Hydroalkylation of Terminal Alkynes. J. Am. Chem. Soc. 2015, 137, 1424-1427. 148. Barboiu, M.; Vaughan, G.; Graff, R.; Lehn, J.-M. Self-Assembly, Structure, and Dynamic Interconversion of Metallosupramolecular Architectures Generated by Pb(II) Binding-Induced Unfolding of a Helical Ligand. J. Am. Chem. Soc. 2003, 125, 10257-10265. 149. Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J.-M. Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays. Angew. Chem., Int. Ed. 2004, 43, 3644-3662. 150. Bandi, S.; Pal, A. K.; Hanan, G. S.; Chand, D. K. Stoichiometrically Controlled Revocable Self-Assembled “Spiro” versus Quadruple-Stranded “Double-Decker” Type Coordination Cages. Chem. -Eur. J. 2014, 20, 13122-13126. 151. Howlader, P.; Mukherjee, P. S. Face and Edge Directed Self-Assembly of Pd12 Tetrahedral Nano-cages and their Self-Sorting. Chem. Sci. 2016, 7, 5893-5899. 152. Blanco, V.; Garcia, M. D.; Platas-Iglesias, C.; Peinador, C.; Quintela, J. M. Dynamic Formation of Self-organized Corner-Connected Square Metallocycles by Stoichiometric Control. Chem. Commun. 2010, 46, 6672-6674. 153. Lee, J.; Ghosh, K.; Stang, P. J. Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-Assembly: Preparation of Fused Metallacyclic Polygons. J. Am. Chem. Soc. 2009, 131, 12028-12029. 154. Neogi, S.; Lorenz, Y.; Engeser, M.; Samanta, D.; Schmittel, M. Heteroleptic Metallosupramolecular Racks, Rectangles, and Trigonal Prisms: Stoichiometry-Controlled Reversible Interconversion. Inorg. Chem. 2013, 52, 6975-6984. 155. C. Constable, E. Metallodendrimers: Metal Ions as Supramolecular Glue. Chem. Commun. 1997, 1073-1080. 156. Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.; Mohapatra, P. P.; Li, S.; Hwang, S.-H.; Lukoyanova, O.; Echegoyen, L.; Palagallo, J. A.; Iancu, V.; Hla, S.-W. Nanoassembly of a Fractal Polymer: A Molecular "Sierpinski Hexagonal Gasket". Science 2006, 312, 1782. 157. Sarkar, R.; Guo, Z.; Li, J.; Burai, T. N.; Moorefield, C.; Wesdemiotis, C.; Newkome, G. R. Multicomponent Reassembly of Terpyridine-based Materials: Quantitative Metallomacrocyclic Rearrangement. Chem. Commun. 2015, 51, 12851-12854. 158. Schultz, A.; Li, X.; McCusker, C. E.; Moorefield, C. N.; Castellano, F. N.; Wesdemiotis, C.; Newkome, G. R. Dondorff Rings: Synthesis, Isolation, and Properties of 60°-Directed Bisterpyridine-Based Folded Tetramers. Chem. -Eur. J. 2012, 18, 11569-11572. 159. Kalsani, V.; Schmittel, M.; Listorti, A.; Accorsi, G.; Armaroli, N. Novel Phenanthroline Ligands and Their Kinetically Locked Copper(I) Complexes with Unexpected Photophysical Properties. Inorg. Chem. 2006, 45, 2061-2067. 160. Schmittel, M.; Mahata, K. Multicomponent Assembly of Heterometallic Isosceles Triangles. Inorg. Chem. 2009, 48, 822-824. 161. Wang, S.-Y.; Fu, J.-H.; Liang, Y.-P.; He, Y.-J.; Chen, Y.-S.; Chan, Y.-T. Metallo-Supramolecular Self-Assembly of a Multicomponent Ditrigon Based on Complementary Terpyridine Ligand Pairing. J. Am. Chem. Soc. 2016, 138, 3651-3654. 162. Tateishi, T.; Kojima, T.; Hiraoka, S. Multiple Pathways in the Self-Assembly Process of a Pd4L8 Coordination Tetrahedron. Inorg. Chem. 2018, 57, 2686-2694. 163. Käseborn, M.; Holstein, J. J.; Clever, G. H.; Lützen, A. A Rotaxane-like Cage-in-Ring Structural Motif for a Metallosupramolecular Pd6L12 Aggregate. Angew. Chem., Int. Ed. 2018, 57, 12171-12175. 164. Toyota, S.; Kawahata, K.; Sugahara, K.; Wakamatsu, K.; Iwanaga, T. Triple and Quadruple Triptycene Gears in Rigid Macrocyclic Frameworks. Eur. J. Org. Chem. 2017, 2017, 5696-5707. 165. Zheng, Y.-R.; Zhao, Z.; Kim, H.; Wang, M.; Ghosh, K.; Pollock, J. B.; Chi, K.-W.; Stang, P. J. Coordination-Driven Self-Assembly of Truncated Tetrahedra Capable of Encapsulating 1,3,5-Triphenylbenzene. Inorg. Chem. 2010, 49, 10238-10240. 166. Chen, M.; Wang, J.; Liu, D.; Jiang, Z.; Liu, Q.; Wu, T.; Liu, H.; Yu, W.; Yan, J.; Wang, P. Highly Stable Spherical Metallo-Capsule from a Branched Hexapodal Terpyridine and Its Self-Assembled Berry-type Nanostructure. J. Am. Chem. Soc. 2018, 140, 2555-2561. 167. Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Baker, G. R.; Cush, R.; Russo, P. S. Self- and Directed Assembly of Hexaruthenium Macrocycles. Angew. Chem., Int. Ed. 1999, 38, 3717-3721. 168. Nikitin, K.; O'Gara, R. Mechanisms and Beyond: Elucidation of Fluxional Dynamics by Exchange NMR Spectroscopy. Chem. -Eur. J. 2018, 25, 4551-4589. 169. Ousaka, N.; Shimizu, K.; Suzuki, Y.; Iwata, T.; Itakura, M.; Taura, D.; Iida, H.; Furusho, Y.; Mori, T.; Yashima, E. Spiroborate-Based Double-Stranded Helicates: Meso-to-Racemo Isomerization and Ion-Triggered Springlike Motion of the Racemo-Helicate. J. Am. Chem. Soc. 2018, 140, 17027-17039. 170. Frisch, M. T., G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian Inc., Wallingford, CT. 2010. 171. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789. 172. Cammi, R.; Tomasi, J. Remarks on the use of the Apparent Surface Charges (ASC) Methods in Solvation Problems: Iterative Versus Matrix-inversion Procedures and the Renormalization of the Apparent Charges. J. Comput. Chem. 1995, 16, 1449-1458. 173. Perrin, C. L.; Dwyer, T. J. Application of Two-Dimensional NMR to Kinetics of Chemical Exchange. Chem. Rev. 1990, 90, 935-967. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77194 | - |
dc.description.abstract | 藉由自然界天然物的啟發,如酵素或是一些具有特殊結構的蛋白質,化學家們盡全力開發一些具有催化效果或是接受外界刺激響應的人工組裝體。在合成這些組裝體的方法中,利用金屬配位鍵來建構這些組裝體十分受矚目,因為組裝體的形狀與功能可以藉由適當的配基設計與選用的金屬離子或是陰離子來達成。
在金屬超分子領域裡含有2,2':6',2'-聯三吡啶官能基的配體因為能與多種的過渡金屬形成鍵結強度不一的錯合物而被廣泛運用。然而如果選用的金屬產生強度太強的配位鍵會使得組裝過程中產生太多動力學副產物,另一方面配位鍵太弱則會產生目標產物與和其相似位能的熱力學副產物。除了以上藉由不同金屬產生不同配位鍵強度的優缺點外,多重位向聯三吡啶配體的自我辨識能力不佳,在形成巨大組裝體的同時常伴隨著誤接的副產物。因此在多重位向聯三吡啶配體裡設計與開發具有高度自我辨識能力的官能基是必須且日益重要的。 在這份工作中我們探討了弱配位金屬鋅與鎘的些微差異及他們與多重配向聯三吡啶配體的自組裝行為,並發展了一些方法來增加聯三吡啶官能基間的自我辨識度。第一個方法是利用官能基幾何配置來形成幾何互補式聯三吡啶官能基對。合成出來的雙位向聯三吡啶配體能夠與鋅只產生單一頭接尾的金屬三角形超分子。第二個方法則是放大弱配位鋅與鎘的些微差異。在一個三角稜狀的金屬“衣服”中,客體穿上這件金屬“衣服”的速度與選擇何種金屬離子來合成這件衣服有關。我們也運用了這種差異性來呈現具備選擇性的仿生物體主客化學。最後一個方法則引入了互補性聯三吡啶官能基對。這個官能基對是由一個在6,6'位置上修飾立障基團的聯三吡啶官能基、鎘金屬離子、與未修飾的聯三吡啶官能基所組成。藉由當量控制,雙配向的6,6'位置修飾聯三吡啶配體可以與未修飾的多配向聯三吡啶配體形成豐富的二維或是三維結構。此外我們也發現到有修飾的聯三吡啶配體能夠與鎘形成配體不易交換的二聚體,而這個二聚體是當量與動力學控制的產物。以上三種方法對於日後聯三吡啶金屬超分子開發具有莫大的助益。 | zh_TW |
dc.description.abstract | Inspired by natural functional nanoobjects commonly occurring in biology such as enzymes or structure-specific proteins, chemists endeavor to make artificial assemblies that have similar catalytic activity or extend their applications as stimuli-responsive materials. Coordination-driven self-assembly to these manmade objects is especially appealing because size, shape or embedded functional groups could be designed/altered on demand by proper ligand design and choice of metal ion and counter anions.
In the vast field of metallo-supramolecules, 2,2':6',2'-terpyridine (tpy)-based ligands have been widely applied because it could bind different transition metal ions and their coordination bond strengths could be modulated accordingly depending on choice of metal ions. If the bond strength is too strong, ligands are barely exchanged and kinetically trapped species dominate. On the other hand, if the coordination bond is too labile, a mixture of targets and byproducts with similar thermodynamic stability will be generated. In addition to the pros and cons of the metal ions selected, multitopic tpy ligands for building complicated structures often result in misconnected byproducts that detour the original assembly route due to poor self-recognition capability of tpy functional groups. Therefore, offering tpy segments on the multitopic tpy ligand to self-recognize themselves to the proper tpy partner is required for the sophiscated structures. Herein, we aim for synthesizing ZnII and CdII-based tpy assemblies that form discrete structures through proper ligand design and discussing the slight dynamic difference between the both traditionally-viewed labile transition metal ions. In the first method, we applied geometrical constraint to make a bistpy ligand possessing two mutually hereoleptic binding sites that self-recognize each other to form a single head-to-tail discrete metallo-triangle. In the second method, the coordination dynamic difference between ZnII and CdII was discussed and exemplified in a metallo-supramolecular pseudo-suit[3]ane. The wearing speed of the metallo-suit was heavily dependent on the choice of metal ions. We then demonstrated a biomimetic system that the guest molecule would prefer to wear one metallo-suit over a certain timeframe. In the last method, we extended application on a recently published heteroleptic dynamic ligand pair composing of CdII, non-substituted and 6,6'-substituted tpy ligands. Through stoichiometric control, the same metal/ligand components could generate either 2D or 3D structures. Furthermore, we also found that bistpy CdII complex of 6,6'-position substituted tpy was kinetically inert and the assembly process became kinetically controlled under certain stoichiometry. The finding and the toolkit developed in this work would be helpful for designing more and more novel and useful tpy-based materials. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:50:19Z (GMT). No. of bitstreams: 1 ntu-108-D01223122-1.pdf: 51807772 bytes, checksum: aef961d945728c13037d39dc234c8059 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II Table of Contents IV Table of Figures VII Table of Schemes XVII Table of Tables XXI Chapter 1. Methodologies for rational design of terpyridine-based metallo-supramolecules 1 1-1 Introduction 1 1-2 Single ligand system 6 1-2-1 Geometry consideration and ESI-gMS2-TWIM-MS 8 1-2-2 Geometry consideration and concept of multivalency 13 1-2-3 Multivalency, orthogonal guest-host interaction, and subtle dynamic difference between <tpy-CdII-tpy> and <tpy-ZnII-tpy> bonds. (for more detail, please refer to chapter 3) 18 1-3 Multiple ligand system 21 1-3-1 Dynamic, heteroleptic complementary ligand pair 21 1-3-2 Amphiphlic diblock copolymer constructed with dynamic ligand pair and their morphology control in polar solvent 27 1-4 Conclusions 31 Chapter 2. Unsymmetrical ligand design and isomer characterization with ESI-gMS2-TWIM-MS 33 2-1 Discrete structure or equilibrium mixture? 33 2-2 Unsymmetrical ligand design 37 2-3 Constitutional isomers and their characterization techniques 40 2-4 Result and discussion 43 2-4-1 Ligand and complex synthesis 43 2-4-2 Searching for discrete triangular complexes from combination of CdII or ZnII and L1-L5 under different counter-ions 44 2-4-3 Constitutional isomer characterization from 1H NMR and gMS2 coupled with ESI-TWIM-MS 47 2-4-4 Triangle stability evaluation from gradient tandem mass spectrometry, gMS2 49 2-4-5 Triangle stability evaluation and CCS differentiation of isomers from gradient tandem mass coupled with electrospray ion mobility travelling wave mass spectrometry, gMS2-ESI-TWIM-MS. 52 2-5 Conclusions 55 2-6 Experimental 56 Chapter 3. Metal ion modulated self-assembly of pseudo-suit[3]anes using crown ether-based terpyridine metalloprisms 96 3-1 Dynamic behavior in metallo supramolecule system 96 3-2 Secondary interactions that are orthogonal to coordination bonds 98 3-3 Suit[n]anes 101 3-4 Molecule design and pseudo-suit[3]tane characterization 102 3-5 Biomimetic selective inclusion of TriG into Cd metallo suit 109 3-6 Conclusions 111 3-7 Experimental 112 Chapter 4. Kinetic and thermodynamic terpyridine-CdII self-assemblies through stoichiometric control 147 4-1 Stoichiometric control in metallo supramolecule 147 4-2 Kinetically inert tpy-CdII complex 151 4-3 Stoichiometric control on the formation of 2D and 3D CdII-tpy supramolecules 155 4-4 Proposed formation mechanism on the metallo triangle C26 that formed both labile and inert bonds at the same time 170 4-5 Conclusions 183 4-6 Experimental 184 Chapter 5. Conclusions 245 References 248 | - |
dc.language.iso | en | - |
dc.title | 具自我辨識能力多配向聯三吡啶配體與其對鋅鎘離子自組裝行為的探討 | zh_TW |
dc.title | Developing Self-Recognition Behavior on Multitopic Terpyridine Ligands and Their ZnII/CdII Metallo- Supramolecular Self-Assembly | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 蔡福裕;王朝諺;江建文;張慕傑 | zh_TW |
dc.contributor.oralexamcommittee | Fu-Yu Tsai;Tiow-Gang Ong;Kien Voon Kong;Mu-Chieh Chang | en |
dc.subject.keyword | 聯三?啶,多組份自組裝,互補性鍵結,聯三?啶官能基自我辨識,動力學控制,幾何控制,當量控制,配位鍵動態強弱差異, | zh_TW |
dc.subject.keyword | terpyridine,multicomponent self-assembly,complementary binding,self-sorting on tpy functional groups,kinetic control,geometry control,stoichiometry control,dynamic difference, | en |
dc.relation.page | 263 | - |
dc.identifier.doi | 10.6342/NTU201903823 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 50.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。