Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任昊佳zh_TW
dc.contributor.advisorHaojia Renen
dc.contributor.author方薇甯zh_TW
dc.contributor.authorWei-Ning Fangen
dc.date.accessioned2021-07-10T21:50:16Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAltabet, M. A., Francois, R., Murray, D. W., & Prell, W. L. (1995). Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373(6514), 506.
Altabet, M. A., Higginson, M. J., & Murray, D. W. (2002). The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO 2. Nature, 415(6868), 159.
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. (1999). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Research Part I-Oceanographic Research Papers, 46(4), 655-679. doi:10.1016/s0967-0637(98)00084-3
Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2).
Andersson, C. (1998). Pliocene calcium carbonate sedimentation patterns of the Ontong Java Plateau: ODP Sites 804 and 806. Marine geology, 150(1-4), 51-71.
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly weather review, 97(3), 163-172.
Braman, R. S., & Hendrix, S. A. (1989). Nanogram nitrite and nitrate determination in environmental and biological-materials by vanadium(iii) reduction with chemi-luminescence detection. Analytical Chemistry, 61(24), 2715-2718. doi:10.1021/ac00199a007
Broecker, W., Clark, E., & Barker, S. (2008). Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr. Earth and Planetary Science Letters, 274(3-4), 322-326.
Burton, K. W., & Vance, D. (2000). Glacial–interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth and Planetary Science Letters, 176(3-4), 425-441.
Checkley Jr, D. M., & Miller, C. A. (1989). Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Research Part A. Oceanographic Research Papers, 36(10), 1449-1456.
Chelton, D. B., Esbensen, S. K., Schlax, M. G., Thum, N., Freilich, M. H., Wentz, F. J., Gentemann, C. L., McPhaden, M. J., & Schopf, P. S. (2001). Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. Journal of Climate, 14(7), 1479-1498.
Clement, A. C., Seager, R., & Cane, M. (1999). Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanography and Paleoclimatology, 14(4), 441-456.
Cravatte, S., Ganachaud, A., Duong, Q. P., Kessler, W. S., Eldin, G., & Dutrieux, P. (2011). Observed circulation in the Solomon Sea from SADCP data. Progress in Oceanography, 88(1-4), 116-130. doi:10.1016/j.pocean.2010.12.015
De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., & Hebbeln, D. (2007). Late Quaternary variability of sedimentary nitrogen isotopes in the eastern South Pacific Ocean. Paleoceanography, 22(2). doi:10.1029/2006pa001308
Diaz, H. F., Hoerling, M. P., & Eischeid, J. K. (2001). ENSO variability, teleconnections and climate change. International Journal of Climatology, 21(15), 1845-1862.
Dubois, N., Kienast, M., Normandeau, C., Herbert, T. D. J. P., & Paleoclimatology. (2009). Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. 24(4).
Fedorov, A. V., & Philander, S. G. (2000). Is El Niño changing? Science, 288(5473), 1997-2002.
Fine, R. A., Lukas, R., Bingham, F. M., Warner, M. J., & Gammon, R. H. J. J. o. G. R. O. (1994). The western equatorial Pacific: A water mass crossroads. 99(C12), 25063-25080.
Froelich, P. N., Klinkhammer, G., Bender, M. L., Luedtke, N., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica Et Cosmochimica Acta, 43(7), 1075-1090.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W., & Fontugne, M. R. (2000). Glacial‐interglacial variability in denitrification in the world's oceans: Causes and consequences. Paleoceanography and Paleoclimatology, 15(4), 361-376.
Gruber, N., & Sarmiento, J. L. (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles, 11(2), 235-266.
Hansell, D. A., & Feely, R. A. (2000). Atmospheric intertropical convergence impacts surface ocean carbon and nitrogen biogeochemistry in the western tropical Pacific. Geophysical Research Letters, 27(7), 1013-1016.
Howell, P., Pisias, N., J.Ballance, Baughman, J., & Ochs, L. (2006). ARAND Time-Series Analysis Software, Brown University, Providence RI.
Jia, G. D., & Li, Z. Y. (2011). Easterly denitrification signal and nitrogen fixation feedback documented in the western Pacific sediments. Geophysical Research Letters, 38. doi:10.1029/2011gl050021
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., & Sachs, J. P. J. S. (2002). El Nino-like pattern in ice age tropical Pacific sea surface temperature. 297(5579), 226-230.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1), 261-285.
Lehmann, N., Granger, J., Kienast, M., Brown, K. S., Rafter, P. A., Martinez-Mendez, G., & Mohtadi, M. (2018). Isotopic Evidence for the Evolution of Subsurface Nitrate in the Western Equatorial Pacific. Journal of Geophysical Research-Oceans, 123(3), 1684-1707. doi:10.1002/2017jc013527
Liu, Y., Lo, L., Shi, Z. G., Wei, K. Y., Chou, C. J., Chen, Y. C., Chuang, C. K., Wu, C. C., Mii, H. S., Peng, Z. C., Amakawa, H., Burr, G. S., Lee, S. Y., DeLong, K. L., Elderfield, H., & Shen, C. C. (2015). Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years. Nature Communications, 6. doi:10.1038/ncomms10018
Liu, Z., Altabet, M. A., & Herbert, T. D. (2008). Plio‐Pleistocene denitrification in the eastern tropical North Pacific: Intensification at 2.1 Ma. Geochemistry, Geophysics, Geosystems, 9(11).
Lo, L., Chang, S.-P., Wei, K.-Y., Lee, S.-Y., Ou, T.-H., Chen, Y.-C., Chuang, C.-K., Mii, H.-S., Burr, G. S., & Chen, M.-T. (2017). Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles. Scientific reports, 7(1), 4626.
Lo, L., Shen, C. C., Wei, K. Y., Burr, G. S., Mii, H. S., Chen, M. T., Lee, S. Y., & Tsai, M. C. (2014). Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination. Climate of the Past, 10(6), 2253-2261. doi:10.5194/cp-10-2253-2014
Mélet, A., Verron, J., Gourdeau, L., & Koch-Larrouy, A. J. J. o. P. O. (2011). Equatorward pathways of Solomon Sea water masses and their modifications. 41(4), 810-826.
Mariotti, A., Germon, J., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., & Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and soil, 62(3), 413-430.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., & Haug, G. H. J. S. (2014). Iron fertilization of the Subantarctic Ocean during the last ice age. 343(6177), 1347-1350.
Meissner, K. J., Galbraith, E. D., & Völker, C. (2005). Denitrification under glacial and interglacial conditions: A physical approach. Paleoceanography, 20(3).
Molina-Cruz, A. (1977). The relation of the southern trade winds to upwelling processes during the last 75,000 years. Quaternary Research, 8(3), 324-338.
Nameroff, T., Calvert, S., & Murray, J. (2004). Glacial‐interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox‐sensitive trace metals. Paleoceanography and Paleoclimatology, 19(1).
Peters, B. D., Lam, P. J., & Casciotti, K. L. (2018). Nitrogen and oxygen isotope measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal Transect (GP16) yield insights into nitrate supply, remineralization, and water mass transport. Marine Chemistry, 201, 137-150.
Rafter, P. A., & Charles, C. D. (2012). Pleistocene equatorial Pacific dynamics inferred from the zonal asymmetry in sedimentary nitrogen isotopes. Paleoceanography, 27. doi:10.1029/2012pa002367
Rafter, P. A., DiFiore, P. J., & Sigman, D. M. (2013). Coupled nitrate nitrogen and oxygen isotopes and organic matter remineralization in the Southern and Pacific Oceans. 118(10), 4781-4794.
Rafter, P. A., Sigman, D. M., Charles, C. D., Kaiser, J., & Haug, G. H. (2012). Subsurface tropical Pacific nitrogen isotopic composition of nitrate: Biogeochemical signals and their transport. Global Biogeochemical Cycles, 26(1).
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American scientist, 46(3), 230A-221.
Ren, H., Sigman, D. M., Meckler, A. N., Plessen, B., Robinson, R. S., Rosenthal, Y., & Haug, G. H. (2009). Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science, 323(5911), 244-248.
Ren, H., Sigman, D. M., Thunell, R. C., Prokopenko, M. G. J. L., & Oceanography. (2012). Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. 57(4), 1011-1024.
Ren, H. J., Sigman, D. M., Martinez-Garcia, A., Anderson, R. F., Chen, M. T., Ravelo, A. C., Straub, M., Wong, G. T. F., & Haug, G. H. (2017). Impact of glacial/interglacial sea level change on the ocean nitrogen cycle. Proceedings of the National Academy of Sciences of the United States of America, 114(33), E6759-E6766. doi:10.1073/pnas.1701315114
Robinson, R. S., Mix, A., & Martinez, P. (2007). Southern Ocean control on the extent of denitrification in the southeast Pacific over the last 70 ka. Quaternary Science Reviews, 26(1-2), 201-212. doi:10.1016/j.quascirev.2006.08.005
Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly weather review, 115(8), 1606-1626.
Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geibert, W., Tagliabue, A., Bowie, A., Jeandel, C., Maldonado, M. T., & Landing, W. M. (2018). The GEOTRACES intermediate data product 2017. Chemical Geology, 493, 210-223.
Schubert, C. J., & Calvert, S. E. (2001). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments:: implications for nutrient utilization and organic matter composition. Deep Sea Research Part I: Oceanographic Research Papers, 48(3), 789-810.
Schulz, M., & Mudelsee, M. (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences, 28(3), 421-426. doi:10.1016/s0098-3004(01)00044-9
Schwarz, B., Mangini, A., & Segl, M. (1996). Geochemistry of a piston core from Ontong Java Plateau (western equatorial Pacific): Evidence for sediment redistribution and changes in paleoproductivity. Geologische Rundschau, 85(3), 536-545.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Bohlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73(17), 4145-4153. doi:10.1021/ac010088e
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., & Karl, D. M. (2009a). Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific. Geophysical Research Letters, 36(8).
Sigman, D. M., Karsh, K. L., & Casciotti, K. L. (2009b). Ocean process tracers: nitrogen isotopes in the ocean.
Smart, S. M., Ren, H. J., Fawcett, S. E., Schiebel, R., Conte, M., Rafter, P. A., Ellis, K. K., Weigand, M. A., Oleynik, S., Haug, G. H., & Sigman, D. M. (2018). Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochimica Et Cosmochimica Acta, 235, 463-482. doi:10.1016/j.gca.2018.05.023
Stoll, H. M., Vance, D., & Arevalos, A. (2007). Records of the Nd isotope composition of seawater from the Bay of Bengal: Implications for the impact of Northern Hemisphere cooling on ITCZ movement. Earth and Planetary Science Letters, 255(1-2), 213-228.
Stott, L., Poulsen, C., Lund, S., & Thunell, R. (2002). Super ENSO and global climate oscillations at millennial time scales. Science, 297(5579), 222-226.
Straub, M., Tremblay, M., Sigman, D., Studer, A., Ren, H., Toggweiler, J., & Haug, G. (2013). Nutrient conditions in the subpolar North Atlantic during the last glacial period reconstructed from foraminifera‐bound nitrogen isotopes. Paleoceanography, 28(1), 79-90.
Turney, C. S., Kershaw, A. P., Clemens, S. C., Branch, N., Moss, P. T., & Fifield, L. K. (2004). Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature, 428(6980), 306.
Wada, E. (1980). Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. Isotope marine chemistry, 375-398.
Wang, X. T., Sigman, D. M., Prokopenko, M. G., Adkins, J. F., Robinson, L. F., Hines, S. K., Chai, J., Studer, A. S., Martinez-Garcia, A., Chen, T., & Haug, G. H. (2017). Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3352-3357. doi:10.1073/pnas.1615718114
Wang, Y.-J., Cheng, H., Edwards, R. L., An, Z., Wu, J., Shen, C.-C., & Dorale, J. A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 2345-2348.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., & An, Z. (2008). Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182), 1090.
Waser, N., Harrison, P., Nielsen, B., Calvert, S., & Turpin, D. (1998). Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnology and Oceanography, 43(2), 215-224.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., & Sigman, D. M. J. R. C. i. M. S. (2016). Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. 30(12), 1365-1383.
Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D., & Mahowald, N. (2008). Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science, 320(5872), 93-96. doi:10.1126/science.1150595
Zhang, S., Li, T., Chang, F., Yu, Z., Xiong, Z., Wang, H. J. C. J. o. O., & Limnology. (2017). Correspondence between the ENSO-like state and glacial-interglacial condition during the past 360 kyr. 35(5), 1018-1031.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77193-
dc.description.abstract西赤道太平洋的表層水缺少硝酸鹽等主要營養鹽,卻具有來自高營養、受到部分同化作用 (partial assimilation) 影響之東赤道太平洋的氮同位素訊號。因赤道東風吹拂,赤道潛流在東赤道太平洋湧升,為表水帶來豐富的營養鹽。而此處由於生物作用僅消耗掉部分硝酸鹽,使得剩餘硝酸鹽氮同位素值 (δ15NNO3) 升高。這一東赤道太平洋的高氮同位素訊號,經過多次的生物提取與再礦化 (remineralization) 之循環,得以被記錄至有機氮中並向外傳送,也一部分造成了西赤道太平洋斜溫層的δ15NNO3高於全球平均。因此我們認為在古氣候變遷中,西赤道太平洋的δ15NNO3變化,主要是反映了東赤道太平洋高δ15NNO3硝酸鹽池的擴張或縮小。
本研究測量了取自所羅門海海洋岩芯MD05-2925 (9.3°S, 151.5°E, 水深1661 m) 的兩種浮游性有孔蟲–– Globigerinoides sacculifer和Globigerinoides ruber ––之有孔蟲氮同位素 (foraminifera-bound δ15N, FB-δ15N),用以重建過去15.8萬年海洋古營養鹽環境。兩物種間的FB-δ15N相近,落於7‰ 至13‰ 之間。而岩芯頂部的FB-δ15N (9.2‰),也近似於現今所羅門海表層水的主要硝酸鹽來源,即次表層水的δ15NNO3 (9.5‰)。因為氮同位素值在兩種有孔蟲間、有孔蟲與主要硝酸鹽來源間,都存在著相似性,使FB-δ15N作為重建過去海水δ15NNO3的指標 (proxy),有著極高的可信度。FB-δ15N呈現進動週期特徵,在赤道高夏/秋日照量時期,同位素值上升。雖然沒有明顯的冰期/間冰期差異,FB-δ15N在紀錄中的兩次冰消期期間,都先下降至極小值(~8.3‰),並隨後急遽上升。
FB-δ15N強烈的進動週期特徵,加上不明顯的冰期/間冰期變化,指示了低緯區變化具主導地位,同時,來自東太平洋最小含氧帶 (oxygen minimum zone) 的影響則十分微弱。現生水文資料與模擬顯示,所羅門海懸浮態顆粒氮的高同位素值,來自源於東赤道太平洋表層硝酸鹽池的有機氮之生成與再礦化。因此,我們認為所羅門海FB-δ15N的變化反映了東赤道太平洋表層營養環境的改變。例如:東赤道太平洋高δ15NNO3硝酸鹽池的擴張,造成了所羅門海的高FB-δ15N。於此同時,東赤道太平洋高δ15NNO3硝酸鹽池的大小,亦受控於當地風力驅動之湧升流的強弱,以及區域生產力的高低。連同東赤道太平洋古生產力的重建,我們的FB-δ15N強烈指示了在赤道高夏/秋日照量極大值時期,東赤道太平洋湧升流增強。此結果與前人的模擬研究相符,呈現出具進動週期特徵的長週期聖嬰—南方振盪現象 (ENSO) 演變。
zh_TW
dc.description.abstractThe surface water in the Western Equatorial Pacific (WEP), although is depleted with nitrate and other major nutrients, bears isotopic signature of partial nitrate assimilation in the nutrient-rich Eastern Equatorial Pacific (EEP). Driven by the easterlies, Equatorial Under Current upwells to the surface of the EEP, where biological uptake only partially consumes nitrate and leaves the remaining nitrate enriched in its nitrogen isotopic composition. Through multiple cycles of uptake and remineralization, the elevated nitrogen isotopic composition is recorded by organic matter and is spread out to regions away from the EEP, partly causing the WEP thermocline nitrate δ15N (δ15NNO3) to be much more elevated than the global mean. We then expect the δ15NNO3 in the WEP to be sensitive to the expansion and shrinking of the EEP high δ15NNO3 region during past climatic cycles.
This study reports foraminifera-bound δ15N (FB-δ15N) of two planktonic species – Globigerinoides sacculifer and Globigerinoides ruber – from marine sediment core MD05-2925 (9.3°S, 151.5°E, water depth 1661 m) in the Solomon Sea over the last 158 ka for paleo-nutrient-environment reconstruction. The FB-δ15N values, similar between the two species, fall between 7‰ to 13‰. The core-top FB-δ15N (9.2‰) is approximately equal to the modern subsurface δ15NNO3 (9.5‰), the dominate nitrate source to the Solomon Sea surface. The similarity between two species and with nitrate source indicates the high credibility of our proxy to represent past δ15NNO3 dynamics. The FB-δ15N values are significantly elevated during periods with high equatorial Summer/Fall insolation with a strong precessional pacing. While without a clear glacial/interglacial difference, at both terminations, the FB-δ15N hits lowest values (~8.3‰) before an abrupt increase.
The lack of clear glacial/interglacial change, yet a strong precessional pacing in the Solomon Sea FB-δ15N record, implies a low latitude control and an insignificant influence from oxygen minimum zones in the eastern tropical Pacific. As modern hydrologic data and modeling exercises demonstrate that production and remineralization of organic matters produced from the remaining surface nitrate pool in the EEP explains the elevation in the Solomon Sea suspended particulate nitrogen, we argue that the variations in our FB-δ15N record reflect changes in the EEP surface nutrient status, such that expansions of the high δ15N nitrate pool cause the observed high FB-δ15N values. The expansion and shrinking of the EEP high δ15N nitrate pool are in turn controlled by wind-driven upwelling and biological productivity in the EEP. Together with reconstruction in the EEP paleoproductivity, our record strongly indicates enhanced EEP upwelling during periods with equatorial insolation maximum, consistent with previous modelling studies showing a strong precessional control on ENSO evolution.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:50:16Z (GMT). No. of bitstreams: 1
ntu-108-R06224201-1.pdf: 3072029 bytes, checksum: 3d0e290b66d2febbbbee96fe413b9ebb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vii
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 El Niño–Southern Oscillation in the Tropical Pacific 1
1.2 Motivation and the Studied Area 3
Chapter 2 Literature Review 6
2.1 Marine Nitrogen Dynamics and Stable Nitrogen Isotope 6
2.1.1 Altering the δ15N: Input, Output and Internal Cycles 8
2.1.2 Reconstruction of the Past δ15NNO3 : Foraminifera-bound δ15N 11
2.2 Regional Description of the Solomon Sea 13
2.2.1 Water Pathways through the Solomon Sea 13
2.2.2 Water Masses and Their Nutrient Characteristics 16
2.3.3 Contributors to WEP Elevated Thermocline Nitrate Concentration and δ15NNO3 19
2.3.4 Hypothesis: Long-term ENSO Reconstruction through FB-δ15N in the Solomon Sea 25
Chapter 3 Material and Method 26
3.1 Material Information 26
3.2 FB-δ15N Measurement 26
3.2.1 Crushing and Cleaning 27
3.2.2 The Persulfate Oxidation Method 28
3.3.3 The Denitrifier Method 29
3.3.4 Isotope Measurement 30
Chapter 4 Results 33
4.1 Downcore Foraminifera-bound δ15N records of MD05-2925 33
4.2 Spectral Analysis of FB-δ15N 35
Chapter 5 Discussion 37
5.1 Core-top FB-δ15N and Modern Subsurface δ15NNO3 in the Solomon Sea 37
5.2 Comparison with Other δ15N Records in the Western Equatorial Pacific 40
5.3 Contributors of Down-core FB-δ15N Fluctuations in the Solomon Sea 41
5.3.1 Local N Fixation Rate 41
5.3.2 Denitrified Water from the ETSP 42
5.3.3 Signals from the EEP High δ15N Nitrate Pool 45
5.3.4 SAMW End-member δ15NNO3 Formed in the SAZ 45
5.4 Upwelling Intensity and the Expansion/Shrink of the High δ15N Nitrate Pool in the EEP 49
5.5 Upwelling Intensity Regulated by Equatorial Summer-Fall Insolation 52
5.6 Comparison with the Nd/Ca Proxy of MD05-2925 54
Chapter 6 Conclusion 58
References 60
Appendix 68
-
dc.language.isoen-
dc.title東赤道太平洋湧升流強度對所羅門海有孔蟲氮同位素的進動週期特徵之影響zh_TW
dc.titlePrecessionally Paced Foraminifera-bound Nitrogen Isotope Variations in the Solomon Sea Influenced by Eastern Equatorial Pacific Upwelling Intensityen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommitteeHoward Jay Spero;Jennifer Fehrenbacherzh_TW
dc.contributor.oralexamcommitteeHoward Jay Spero;Jennifer Fehrenbacheren
dc.subject.keyword有孔蟲氮同位素,進動週期,ENSO,所羅門海,再礦化作用,zh_TW
dc.subject.keywordForaminifera-bound δ15N,Precession,ENSO,the Solomon Sea,Remineralization,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU201903886-
dc.rights.note未授權-
dc.date.accepted2019-08-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved