請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊爵因 | zh_TW |
| dc.contributor.advisor | Jiue-in Yang | en |
| dc.contributor.author | 劉佳瑾 | zh_TW |
| dc.contributor.author | Jia-jin Law | en |
| dc.date.accessioned | 2021-07-10T21:50:14Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-23 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Chapter 1:
Acedo, J. R., and Dropkin, V. H. 1982. Technique for obtaining eggs and juveniles of Heterodera glycines. J. Nematol. 14:418. Amin, W. A., and Al-Shalaby, M. E. M. 2005. Effect of soaking seed in hot water and nematicide on survival of Aphelenchoides besseyi white tip nematode in rice. Pak. J. Nematol 22:163-172. Barker, K. R. 1985 Nematode extraction and bioassays. Pages 19-35 in An advanced treatise on Meloidogyne Vol. II: Methodology. Barker, K. R., Carter, C. C., and Sasser, J. N., eds. North Carolina State University Graphics, North Carolina, US. Carta, L. K., and Carta, D. G. 2000. Nematode specific gravity profiles and applications to flotation extraction and taxonomy. Nematology 2:201-210. Cheng, X., Xiang, Y., Xie, H., Xu, C. L., Xie, T. F., Zhang, C., and Li, Y. 2013. Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far-1) in Aphelenchoides besseyi. PLoS One 8:e66011. Da Silva, G. S. 1992. White tip and national rice production. Informe Agropecuario Belo Horizonte 16:57-59. Decraemer, W., and Hunt, D. J. 2013. Structure and Classification. Pages 29-32 in Plant nematology, 2nd edn. Perry, R. N., and Moens, M., eds. CABI, Wallingford, UK. Dillman, A. R., and Sternberg, P. W. 2012. Entomopathogenic nematodes. Curr. Biol. 22:430-431. Dunn, R. A. 1973. Extraction of eggs of Pratylenchus penetrans from alfalfa callus and relationship between age of culture and yield of eggs. J. Nematol. 5:73. Fukano, H. 1962. Ecological studies on white tip disease of rice plant caused by Aphelenchoides besseyi Christie and its control. Bull. Fukuoka Agric. Exp. Sta. 18:1-10. Gokte, N., and Mathur, V. K. 1989. Reproduction and development of Aphelenchoides besseyi. Phytoparasitica 17:263-267. Huang, C. S., and Huang, S. P. 1972. Bionomics of white-tip nematode, Aphelenchoides besseyi in rice florets and developing grains. Bt. Bull. Academia Sinica 13:1-10. Huang, C. S., Huang, S. P., and Lin, L. H. 1972. The effect of temperature on development and generation periods of Aphelenchoides besseyi. Nematologica 18:432-438. Huang, C. S., Huang, S. P., and Chiang, Y. C. 1979. Mode of reproduction and sex ratio of rice white-tip nematode, Aphelenchoides besseyi. Nematologica 25:255-260. Huang, Y. P. 1959. White tip disease of rice in Taiwan. FAO Pl. Protect. Bull., 1:1-6. Hsieh, S.-H., Lin, C.-J., and Chen, P. 2012. Sexual compatibility among different host-originated isolates of Aphelenchoides besseyi and the inheritance of the parasitism. PLoS One 7:e40886. Jamali, S., Pourjam, E., Alizadeh, A., and Alinia, F. 2008. Reproduction of the White tip nematode (Aphelenchoides besseyi Christie, 1942) in different monoxenic cultures. J. Agric. Sci. Technol. 10:165-171. Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla‐López, R., Palomares‐Rius, J. E., and Wesemael, W. M. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946-961. Kakuta, I. 1913. Black grain disease of rice. J PI Prot Tokyo 2:214-218. Kuo, C.-C., and Liao, C.-T. 2010. The occurrence and survey of the bakanae and white-tip diseases on rice in central Taiwan. Bull. Taichung Dist. Agric. Improv. Stn. 108:3-24. Nishizawa, T. 1953. Studies on the varietal resistance of rice plant to the rice nematode disease" senchu shingare byo"(VI). Bull. Kyushu Agric. Exp. Sta. 1:339-349. Oka, Y. 2014. Nematicidal activity of fluensulfone against some migratory nematodes under laboratory conditions. Pest Manag. Sci. 70:1850-1858. Pei, Y., Cheng, X., Xu, C., Yang, Z., and Xie, H. 2012. Virulence of part populations of Aphelenchoides besseyi on rice in China. Chin J Rice Sci. 26:218-226. Perry, R. N. 1976. Separation of stages of Ditylenchus dipsaci and D. myceliophagus by body length. Nematologica 22:446-450. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., and Cerón, J. 2012. Basic Caenorhabditis elegans methods: synchronization and observation. J. Vis. Exp. 64:e4019. Rzeznik-orignac, J., Fichet, D., and Boucher, G. 2004. Extracting massive numbers of nematodes from muddy marine deposits: efficiency and selectivity. Nematology 6(4):605-616. Shurtleff, M. C., and Averre, C. W. 2000. Methods. Pages 34-39 in Diagnosing plant diseases caused by nematodes. American Phytopathological Society (APS Press), St. Paul, Minnesota, US. Tamura, I., and Kegasawa, K. 1959. Studies on the ecology of the rice nematode, Aphelenchoides beiseyi Christie. III. The injured features of the rice plant and the population density of nematodes found in the unhulled rice grain with special reference to the type of the nursery bed. Jap. J. Ecol. 9:1-4. Togashi, K., and Hoshino, S. 2003. Trade-off between dispersal and reproduction of a seed-borne nematode, Aphelenchoides besseyi, parasitic on rice plants. Nematology 5:821-829. Tsay, T. T., Cheng, Y. H., Teng, Y. C., Lee, M. D., Wu, W. S., and Lin, Y. Y. 1998. Bionomics and control of rice white tip disease nematode, Aphelenchoides besseyi. Plant Prot. Bull. 40:277-286. Tzeng, C. Y., and Lin, Y. Y. 2005. The intraspecific variation of Aphelenchoides besseyi populations in Taiwan. Plant Pathol. Bull. 14:67-75. Viglierchio, D. R., and Schmitt, R. V. 1983. On the methodology of nematode extraction from field samples: Density flotation techniques. J. Nematol. 15:444-449. Wharton, D. A. 2002. Nematode Survival Strategies. Pages in 757-800 in The biology of nematodes. Lee, D. L., eds. Taylor & Francis, New York, US. Wu, H.-Y. 2011. The occurrence of White Tip of rice in the Northern part of Taiwan and improvement of rice seed treatment method. Bull. Taoyuan Dist. Agric. Improv. Stn. 70:51-60. Yoshida, K., Hasegawa, K., Mochiji, N., and Miwa, J. 2009. Early embryogenesis and anterior-posterior axis formation in the white-tip nematode Aphelenchoides besseyi (Nematoda: Aphelenchoididae). J. Nematol. 41:17-22. Yoshii, H., and Yamamoto, S. 1950. A rice nematode disease ‘‘Senchu Shingare Byo.’’ II. Hibernation of Aphelenchoides oryzae. J. Fac. Agr. Kyushu U. 9:223-233. Yu, G. Y. 2018. Development and application of a rapid detection assay of White-tip disease and Bakanae disease on rice. Master Thesis. National Taiwan University, Taiwan. Zheng, L., and Ferris, H. 1991. Four types of dormancy exhibited by eggs of Heterodera schachtii. Revue de Nématol. 14:419-426. Chapter 2: Artyukhin, A. B., Yim, J. J., Srinivasan, J., Izrayelit, Y., Bose, N., von Reuss, S. H., Jo, Y., Jordan, J. M., Baugh, L. R., Cheong, M., Sternberg, P. W., Avery, L., and Schroeder, F. C. 2013. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288:18778-18783. Bargmann, C. I., and Horvitz, H. R. 1991. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729-742. Bargmann, C. I., Hartwieg, E., and Horvitz, H. R. 1993. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515-527. Brown Jr, W. L., Eisner, T., and Whittaker, R. H. 1970. Allomones and kairomones: transspecific chemical messengers. Bioscience 20:21-21. Butcher, R. A. 2017. Decoding chemical communication in nematodes. Nat. Prod. Rep. 34:472-477. Butcher, R. A., Ragains, J. R., and Clardy, J. 2009. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org. Lett. 11:3100-3103. Butcher, R. A., Fujita, M., Schroeder, F. C., and Clardy, J. 2007. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3:420-422. Butcher, R. A., Ragains, J. R., Kim, E., and Clardy, J. 2008. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc. Natl. Acad. Sci. U.S.A. 105:14288-14292. Chaudhuri, J., Bose, N., Tandonnet, S., Adams, S., Zuco, G., Kache, V., Parihar, M., von Reuss, S. H., Schroeder, F. C., and Pires-daSilva, A. 2015. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci Rep 5:17676. Choe, A., von Reuss, S. H., Kogan, D., Gasser, R. B., Platzer, E. G., Schroeder, F. C., and Sternberg, P. W. 2012a. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22:772-780. Choe, A., Chuman, T., von Reuss, S. H., Dossey, A. T., Yim, J. J., Ajredini, R., Kolawa, A. A., Kaplan, F., Alborn, H. T., Teal, P. E., Schroeder, F. C., Sternberg, P. W., and Edison, A. S. 2012b. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. U.S.A. 109:20949-20954. Diaz, S. A., Brunet, V., Lloyd-Jones, G. C., Spinner, W., Wharam, B., and Viney, M. 2014. Diverse and potentially manipulative signalling with ascarosides in the model nematode C. elegans. BMC Evol. Biol. 14:46. Dong, C., Dolke, F., and von Reuss, S. H. 2016. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling. Org. Biomol. Chem. 14:7217-7225. Dutta, T. K., Powers, S. J., Kerry, B. R., Gaur, H. S., and Curtis, R. H. 2011. Comparison of host recognition, invasion, development and reproduction of Meloidogyne graminicola and M. incognita on rice and tomato. Nematology 13:509-520. Edison, A. S., Clendinen, C. S., Ajredini, R., Beecher, C., Ponce, F. V., and Stupp, G. S. 2015. Metabolomics and natural-products strategies to study chemical ecology in nematodes. Integr. Comp. Biol. 55:478-485. Fortuner, R., and Orton Williams, K. J. 1975. Review of the literature on Aphelenchoides besseyi Christie, 1942, the nematode causing “white tip” disease in rice. Helminthological Abstracts: Series B. Plant Nematol. 44:1-40. Fukano, H. 1962. Ecological studies on white tip disease of rice plant caused by Aphelenchoides besseyi, Christie and its control. Bull. Fukuoka Agric. Exp. Sta. 18:1-10. Gokte, N., and Mathur, V. K. 1989. Reproduction and development of Aphelenchoides besseyi. Phytoparasitica 17:263-267. Golden, J. W., and Riddle, D. L. 1982. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218:578-580. Greene, J. S., Brown, M., Dobosiewicz, M., Ishida, I. G., Macosko, E. Z., Zhang, X., Butcher, R. A., Cline, D. J., McGrath, P. T., and Bargmann, C. I. 2016. Balancing selection shapes density-dependent foraging behavior. Nature 539:254-258. Hollister, K. A., Conner, E. S., Zhang, X., Spell, M., Bernard, G. M., Patel, P., De Carvalho, A. C. G.V., Butcher, R. A., and Ragains, J. R. 2013. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure. Bioorg. Med. Chem. 21:5754-5769. Hsueh, Y.-P., Mahanti, P., Schroeder, F. C., and Sternberg, P. W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23:83-86. Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., Schroeder, F. C., and Sternberg, P. W. 2017. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6:e20023. Huettel, R. N. 1986. Chemical communicators in nematodes. J. Nematol. 18:3-8. Izrayelit, Y., Srinivasan, J., Campbell, S. L., Jo, Y., von Reuss, S. H., Genoff, M. C., Sternberg, P. W., and Schroeder, F. C. 2012. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans. ACS Chem Biol. 7:1321–1325. Jaffe, H., Huettel, R. N., Demilo, A. B., Hayes, D. K., and Rebois, R. V. 1989. Isolation and identification of a compound from soybean cyst nematode, Heterodera glycines, with sex pheromone activity. J. Chem. Ecol. 15:2031-2043. Jamali, S., Pourjam, E., Alizadeh, A., and Alinia, F. 2008. Reproduction of the White tip nematode (Aphelenchoides besseyi Christie, 1942) in different monoxenic cultures. J. Agric. Sci. Technol. 10:165-171. Jeong, P.-Y., Jung, M., Yim, Y.-H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y. H., Kim, K., and Paik, Y.-K. 2005. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541-545. Jezyk, P. F., and Fairbairn, D. 1967. Ascarosides and ascaroside esters in Ascaris lumbricoides (Nematoda). Comp. Biochem. Physiol. 23:691-705. Kaplan, F., Srinivasan, J., Mahanti, P., Ajredini, R., Durak, O., Nimalendran, R., Sternberg, P. W., Teal, P. E., Schroeder, F. C., Edison, A. S., and Alborn, H. T. 2011. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. PLoS One 6:e17804. Kaplan, F., Alborn, H. T., von Reuss, S. H., Ajredini, R., Ali, J. G., Akyazi, F., Stelinski, L. L., Edison, A. S., Schroeder, F. C., and Teal, P. E. 2012. Interspecific nematode signals regulate dispersal behavior. PLoS One 7:e38735. Karlson, P., and Lüscher, M. 1959. ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55. Karlson, P., and Butenandt, A. 1959. Pheromones (ectohormones) in insects. Annu. Rev. Entomol. 4:39-58. Kim, K.-Y., Joo, H.-J., Kwon, H.-W., Kim, H., Hancock, W. S., and Paik, Y.-K. 2013. Development of a method to quantitate nematode pheromone for study of small-molecule metabolism in Caenorhabditis elegans. Anal. Chem. 85:2681-2688. Kuo, C.-C., and Liao, C.-T. 2010. The Occurrence and Survey of the Bakanae and White-tip Diseases on Rice in Central Taiwan. Bull. Taichung Dist. Agric. Improv. Stn. 108:3-24. Law, J. H., and Regnier, F. E. 1971. Pheromones. Annu. Rev. Biochem. 40:533-548. Ludewig, A. H., Izrayelit, Y., Park, D., Malik, R. U., Zimmermann, A., Mahanti, P., Fox, B. W., Bethke, A., Doering, F., Riddle, D. L., and Schroeder, F. C. 2013. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. U.S.A. 110:5522-5527. Manosalva, P., Manohar, M., von Reuss, S. H., Chen, S., Koch, A., Kaplan, F., Choe, A., Micikas, R. J., Wang, X., Kogel, K.-H., Sternberg, P. W., Williamson, V. M., Schroeder, F. C., and Klessig, D. F. 2015. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6:7795. Margie, O., Palmer, C., and Chin-Sang, I. 2013. C. elegans chemotaxis assay. J. Vis. Exp. 74:e50069. Maures, T. J., Booth, L. N., Benayoun, B. A., Izrayelit, Y., Schroeder, F. C., and Brunet, A. 2014. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343:541-544. Mayer, M. G., and Sommer, R. J. 2011. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc. R. Soc. B-Biol. Sci. 278:2784-2790. Molles, M. C. 2013. Ecology: concepts and applications. 6th edn., International student edn. McGraw-Hill, New York, US. Monteiro, L. C., Van Butsel, J., De Meester, N., Traunspurger, W., Derycke, S., and Moens, T. 2017. Differential heavy-metal sensitivity in two cryptic species of the marine nematode Litoditis marina as revealed by developmental and behavioural assays. J. Exp. Mar. Biol. Ecol. 502:203-210. Noguez, J. H., Conner, E. S., Zhou, Y., Ciche, T. A., Ragains, J. R., and Butcher, R. A. 2012. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora. ACS Chem. Biol. 7:961-966. Noh, K., Park, J. H., Kim, M., Jung, M., Lee, H. J., Kwon, K. i., Kang, W., and Ha, H. 2012. Determination of daumone in mouse plasma by HPLC/MS‐MS. Biomed. Chromatogr. 26:152-155. Nordlund, D. A., and Lewis, W. 1976. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J. Chem. Ecol. 2:211-220. Pungaliya, C., Srinivasan, J., Fox, B. W., Malik, R. U., Ludewig, A. H., Sternberg, P. W., and Schroeder, F. C. 2009. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 106:7708-7713. Ruess, L., Zapata, E. J. G., and Dighton, J. 2000. Food preferences of a fungal-feeding Aphelenchoides species. Nematology 2:223-230. Shapiro-Ilan, D. I., Lewis, E. E., and Schliekelman, P. 2014. Aggregative group behavior in insect parasitic nematode dispersal. Int. J. Parasit. 44:49-54. Smolyanyuk, E. V., Bilanenko, E. N., Tereshina, V. M., Kachalkin, A. V., and Kamzolkina, O. V. 2013. Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp. Microbiology 82:600-608. Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H. T., Teal, P. E. A. , Malik, R. U., Edison, A. S., Sternberg, P. W., and Schroeder, F. C. 2008. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454:1115-1118. Srinivasan, J., von Reuss, S. H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M. C., O'Doherty, O. G., Edison, A. S., Sternberg, P. W., and Schroeder, F. C. 2012. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS. Biol. 10:e1001237. Steinberg, R. A. 1939. Growth of fungi in synthetic nutrient solutions. Bot Rev. 5:327. Sword, G. A., Lorch, P. D., and Gwynne, D. T. 2005. Insect behaviour: Migratory bands give crickets protection. Nature 433:703. Uvarov, B. P. 1977. Grasshopper and Locust: A Handbook of General Acridology. Vol. II: Behaviour, Ecology, Biogeography, Population Dynamics. Cambridge Univ. Press, Cambridge, UK. von Reuss, S. H., Dolke, F., and Dong, C. 2017. Ascaroside profiling of Caenorhabditis elegans using gas chromatography–electron ionization mass spectrometry. Anal. Chem. 89:10570-10577. von Reuss, S. H., Bose, N., Srinivasan, J., Yim, J. J., Judkins, J. C., Sternberg, P. W., and Schroeder, F. C. 2012. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134:1817-1824. Wang, C., Lower, S., and Williamson, V. M. 2009. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology 11:453-464. Wharam, B., Weldon, L., and Viney, M. 2017. Pheromone modulates two phenotypically plastic traits–adult reproduction and larval diapause–in the nematode Caenorhabditis elegans. BMC Evol. Biol.17:197. Whittaker, R. H. 1970. The biochemical ecology of higher plants. Pages 43-70 in Chemical ecology. Sondheimer, E., and Simeone, J. B., eds. Academic Press, New York, US. Wu, H.-Y. 2011. The occurrence of White Tip of rice in the Northern part of Taiwan and improvement of rice seed treatment method. Bull. Taoyuan Dist. Agric. Improv. Stn. 70:51-60. Wuyts, N., Swennen, R., and De Waele, D. 2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89-101. Zhang, X., Noguez, J. H., Zhou, Y., and Butcher, R. A. 2013. Analysis of ascarosides from Caenorhabditis elegans using mass spectrometry and NMR spectroscopy. Pages 71-92 in Pheromone Signaling: Methods and Protocols, Methods in Molecular Biology, vol 1068. Touhara, K., eds. Humana Press, Totowa, NJ. Zhang, X., Feng, L., Chinta, S., Singh, P., Wang, Y., Nunnery, J. K., and Butcher, R. A. 2015. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 112:3955-3960. Zhao, L., Ahmad, F., Lu, M., Zhang, W., Wickham, J. D., and Sun, J. 2018. Ascarosides promote the prevalence of ophiostomatoid fungi and an invasive pathogenic nematode, Bursaphelenchus xylophilus. J. Chem. Ecol. 44:701-710. Zhao, L., Zhang, X., Wei, Y., Zhou, J., Zhang, W., Qin, P., Chinta, S., Kong, X., Liu, Y., Yu, H., Hu, S., Zou, Z., Butcher, R. A., and Sun, J. 2016. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nat. Commun. 7:12341. Zhou, Y., Loeza-Cabrera, M., Liu, Z., Aleman-Meza, B., Nguyen, J. K., Jung, S.-K., Choi, Y., Shou, Q., Butcher, R. A., and Zhong, W. 2017. Potential nematode alarm pheromone induces acute avoidance in Caenorhabditis elegans. Genetics 206:1469-1478. Chapter 3: Alston, D. G., and Schmitt, D. P. 1988. Development of Heterodera glycines life stages as influenced by temperature. J. Nematol. 20:366. Barbercheck, M.E., and Duncan, L. 2004. Abiotic Factors. Pages 309 in Nematode behaviour, Gaugler, R., and Bilgrami, A. L., eds. CABI, Wallingford, UK. Berliner, J. 2013. Studies on the effect of elevated carbondioxide on root-knot nematode (Meloidogyne incognita)-tomato (Solanum lycopersicum) interaction. Ph.D. Thesis. Division of Nematology Indian Agricultural Research Institute New Delhi, India. Bongers, T., and Ferris, H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14:224-228. Brodie, B. B., and Toler, R. W. 1966. Survival of Meloidogyne incognita in absence of oxygen. Phytopathology 56:872. Chen, Q., Li, D., Wang, F., Zhang, R., and Ling, Y. 2017. Trehalose metabolism genes of Aphelenchoides besseyi (Nematoda: Aphelenchoididae) in hypertonic osmotic pressure survival. Biol. Open 6:664-672. Glazer, I., and Salame, L. 2000. Osmotic survival of the entomopathogenic nematode Steinernema carpocapsae. Biol. Control 18:251-257. Gokte, N., and Mathur, V. K. 1989. Reproduction and development of Aphelenchoides besseyi. Phytoparasitica 17:263-267. Huang, C. S., Huang, S. P., and Lin, L. H. 1972. The effect of temperature on development and generation periods of Aphelenchoides besseyi. Nematologica 18:432-438. Inserra, R. N., Griffin, G. D., and Sisson, D. V. 1983. Effects of temperature and root leachates on embryogenic development and hatching of Meloidogyne chitwoodi and M. hapla. J. Nematol. 15:123. Jablonska, B., Ammiraju, J. S. S., Bhattarai, K. K., Mantelin, S., De Ilarduya, O. M., Roberts, P. A., and Kaloshian, I. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol. 143:1044-1054. Jamali, S., Pourjam, E., Alizadeh, A., and Alinia, F. 2008. Reproduction of the White tip nematode (Aphelenchoides besseyi Christie, 1942) in different monoxenic cultures. J. Agric. Sci. Technol. 10:165-171. Klass, M. R. 1977. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6:413-429. Laughlin, C. W., Williams, A. S., and Fox, J. A. 1969. The influence of temperature on development and sex differentiation of Meloidogyne graminis. J. Nematol. 1:212. Maleita, C., Curtis, R., and Abrantes, I. 2012. Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathol. 61:1002-1010. McSorley, R. 2003. Adaptations of nematodes to environmental extremes. Fla. Entomol. 86:138-143. Moens, T., Coomans, A., and De Waele, D. 1996. Effect of temperature on the in vitro reproduction of Aphelenchoides rutgersi. Fundam. Appl. Nematol. 19:47-52. Nikandrow, A., and Blake, C. D. 1973. Carbon Dioxide and the hatch of eggs and development of larvae of Aphelenchoides composticola and Ditylenchus myceliophagus. Nematologica 19:508-515. Pline, M., and Dusenbery, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13:873-888. Ploeg, A. T., and Maris, P. C. 1999. Effects of temperature on the duration of the life cycle of a Meloidogyne incognita population. Nematology 1:389-393. Pudasaini, M. P., Viaene, N., and Moens, M. 2008. Hatching of the root-lesion nematode, Pratylenchus penetrans, under the influence of temperature and host. Nematology 10:47-54. Saeed, M., and Roessner, J. 1984. Anhydrobiosis in five species of plant associated nematodes. J. Nematol. 16:119. Sciacca, J., Forbes, W. M., Ashton, F. T., Lombardini, E., Gamble, H. R., and Schad, G. A. 2002. Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol. Int. 51:53-62. Somasekhar, N., and Prasad, J. S. 2012. Plant-nematode interactions: consequences of climate change. Pages 547-564 in Crop stress and its management: Perspectives and strategies. Venkateswarlu, B., Shanker, A. K., Shanker, C., and Maheswari, M., eds. Springer, Dordrecht, The Netherlands. Tzortzakakis, E. A., and Trudgill, D. L. 2005. A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology 7:313-316. van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572: 195-200. Wharton, D. 1996. Water loss and morphological changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. J. Exp. Biol. 199:1085-1093. Yen, J. H., Lee, M. D., Chen, D. Y., Lin, C. Y., and Tsay, T. T. 1998. The comparison of three nematode-extraction methods on four selected nematodes. Plant Prot. Bull. 40:153-162. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77192 | - |
| dc.description.abstract | 水稻葉芽線蟲Aphelenchoides besseyi所引起的種傳性病害——水稻白尖病能造成高達70%的減產,為生產水稻重要的限制因子。針對種傳性病害,一般推薦使用預防型的防治策略,而研究線蟲的行為與相關調控機制將有助於相關防治策略的擬定。前人研究已知線蟲的發育與行為皆與環境中非生物因子相關,且受ascaroside類的費洛蒙調控。有鑒於近年氣候變遷,水稻白尖病的發生趨於嚴重,本研究在建立水稻葉芽線蟲的齡期分離技術後,運用此技術探討該線蟲費洛蒙對吸引異性及取食偏好性的行為影響,以及該線蟲生長發育受到環境中溫度與二氧化碳濃度的可能影響。首先,本研究結合並改良了可大量收集卵的齡期同步化技術,以及可收集成蟲的蔗糖懸浮法,成功建立水稻葉芽線蟲的齡期分離技術。其次,運用粗萃取與HPLC-MS/MS技術,本研究發現水稻葉芽線蟲ascarosides的釋放跟生長階段相關;在混合齡期 (ascr#9) 及二齡幼蟲 (J2) (ascr#7,oscr#9) 的樣本中所偵測到的ascarosides種類不同。本研究以行兩性生殖的水稻葉芽線蟲GD分離群為材料進行費洛蒙趨化性實驗,然而結果顯示雌蟲和雄蟲對於單一齡期或性別的費洛蒙粗萃物的反應並不具專一性,推測水稻葉芽線蟲吸引異性的費洛蒙需要在特定情況下產生。此外,本研究證實了水稻葉芽線蟲對於不同的水稻品種具有取食偏好性,且ascarosides對於其取食偏好性的影響與品種具有高度相關性。以人工合成的ascarosides, asc#7進行趨化性實驗,結果發現水稻葉芽線蟲的J2及成蟲皆會排斥高濃度之asc#7,暗示著asc#7與線蟲族群密度的調控可能相關。此外,本研究發現,用於人工培養線蟲的真菌Alternaria citri也會產生ascarosides,且利用S-basal溶液能收集到較多種類。自溫度與二氧化碳濃度的試驗中,發現溫度升高至26°C和28°C會加快葉芽線蟲的卵孵化和發育;由試驗數據可推測26°C有可能為水稻葉芽線蟲所造成的經濟損失趨於嚴重的閥值溫度。然而,水稻葉芽線蟲的卵孵化及存活率皆不受升高至800 ppm的二氧化碳濃度影響。整體而言,本研究建立了水稻葉芽線蟲齡期分離技術,證實了水稻葉芽線蟲A. besseyi及真菌A. citri會產生ascarosides並提供了其作為族群溝通訊號調控葉芽線蟲種內及種間反應的可能性,亦了解氣候變遷環境條件對水稻葉芽線蟲發育影響。 | zh_TW |
| dc.description.abstract | The leaf and bud nematode Aphelenchoides besseyi is a major limiting factor of rice production as the highest yield loss due to the white tip disease caused by this seed-borne nematode up to 70%. Prevention strategy is usually applied for seed-borne disease, and the investigation of plant-parasitic nematode behavior and its regulation mechanisms would help to establish a management strategy. Previous studies have shown that the nematode development and behavior are greatly influenced by the environmental abiotic factors, and regulated by a class of allelochemical called ascarosides. Given the fact that the white tip disease became severe due to climate change, the A. besseyi stage separation technique was established for the examination of ascarosides effect on the nematode behavior, including sex attraction and feeding preference; and the possible effect of temperature and carbon dioxide on nematode development. First, the study had optimized and combined the synchronization and sucrose flotation methods, that was for mass collection of eggs and adults, respectively; and established a productive stage separation assay for A. besseyi successfully. Then, by using nematode crude allelochemicals and HPLC-MS/MS technique, the study revealed that the ascarosides expression in A. besseyi was dependent on the developmental stages as different types of ascarosides were detected in the mixed-stage (ascr#9) and second-stage juvenile (J2) samples (ascr#7, oscr#9). In our study, the chemotaxis assay was performed with crude allelochemicals from GD strain that was amphimixis; however, the results showed that the behavior response of female and male was not gender- or developmental stage-specific, indicating that the sex attraction-related ascarosides may only produce under specific circumstances. In addition, the feeding preferences of A. besseyi towards different rice cultivars was confirmed in our study; and the ascarosides effect on feeding preferences was also rice cultivar-dependent. The results from the chemotaxis assay performed with synthesis ascarosides ascr#7 showed that all J2 and adults were repelled to the high concentration asc#7, indicating the possibility of ascr#7 involvement in A. besseyi population density regulation. Besides, the fungus Alternaria citri that used for nematode culture also produced ascarosides, and more types of ascarosides were collected through S-basal-collect produce. The results from temperature and carbon dioxide experiments showed that both elevated temperature (26°C and 28°C) accelerated the egg hatching and development rate. Also, from the experiment results, 26°C may suggest as the temperature threshold of the economic loss caused by A. besseyi became severe. However, the egg hatching and survival rates remained unaffected under elevated carbon dioxide of 800 ppm. In conclusion, our study established A. besseyi stage separation assay, revealed that A. besseyi and its fungal host, A. citri produce ascarosides, and provided the possible role of ascarosides as a population signal to regulate the A. besseyi intra- and inter-specific interaction; finally determined the effect of climate change on A. besseyi development. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:50:14Z (GMT). No. of bitstreams: 1 ntu-108-R05633006-1.pdf: 3110648 bytes, checksum: 2a936fdbe18076b2a9e3f6b9be19d5e6 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v Contents vii List of Tables x List of Figures xi Chapter 1 Stage separation technique for Aphelenchoides besseyi 1 1.1 Introduction 1 1.1.1 Aphelenchoides besseyi 1 1.1.2 Nematode stage separation 3 1.2 Materials and Methods 5 1.2.1 Aphelenchoides besseyi 5 1.2.2 Synchronization 5 1.2.3 Sucrose flotation 7 1.2.4 Sieving method 8 1.3 Result 9 1.3.1 The optimization of synronization method 9 1.3.2 The optimization of sucrose flotation method 10 1.3.3 The optimization of sieving method 11 1.4 Discussion 11 1.5 References 12 Chapter 2 The ascarosides effect on the Aphelenchoides besseyi behavior 21 2.1 Introduction 21 2.1.1 Population signals 21 2.1.2 Nematode semiochemical system 22 2.1.3 The ascarosides system 23 2.1.4 Ascarosides intraspecific roles 24 2.1.5 Ascarosides interspecific roles 27 2.1.6 Methodology of ascarosides system 28 2.1.7 Aim of the study 30 2.2 Materials and Methods 31 2.2.1 A. besseyi reproduction form 31 2.2.2 Crude allelochemical extraction for HPLC analysis 31 2.2.3 Ascaroside identification 33 2.2.4 The effect of crude allelochemical extract on behavior 33 2.2.5 The behavior response of A. besseyi to the synthesis ascarosides, ascr#7 37 2.3 Results 38 2.3.1 A. besseyi reproductive form 38 2.3.2 Ascarosides identified in A. besseyi and A. citri 38 2.3.3 The effect of crude allelochemical extract on sex attraction 39 2.3.4 The effect of crude allelochemical extract on feeding preferences 40 2.3.5 The behavior response of A. besseyi to the synthesis ascarosides, ascr#7 40 2.4 Discussion 41 2.5 References 46 Chapter 3 Aphelenchoides besseyi development under environmental changes 61 3.1 Introduction 61 3.2 Material and Methods 63 3.2.1 Experimental design 63 3.2.2 Egg hatching rate 63 3.2.3 Development rate 64 3.2.4 Survival rate 65 3.3 Results 66 3.4 Discussion 68 3.5 References 71 Supplementary information 82 | - |
| dc.language.iso | en | - |
| dc.subject | 線蟲費洛蒙 | zh_TW |
| dc.subject | 水稻葉芽線蟲 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 齡期分離技術 | zh_TW |
| dc.subject | ascarosides | zh_TW |
| dc.subject | Aphelenchoides besseyi | en |
| dc.subject | temperature | en |
| dc.subject | nematode allelochemical | en |
| dc.subject | stage separation | en |
| dc.subject | climate change | en |
| dc.subject | ascarosides | en |
| dc.subject | CO2 | en |
| dc.title | 費洛蒙與環境因子對水稻葉芽線蟲的影響 | zh_TW |
| dc.title | Effects of ascarosides and environmental factors on Aphelenchoides besseyi | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈偉強;鍾嘉綾;何傳愷 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-chiang Shen;Chia-lin Chung;Chuan-kai Ho | en |
| dc.subject.keyword | 水稻葉芽線蟲,線蟲費洛蒙,ascarosides,齡期分離技術,氣候變遷,溫度,二氧化碳, | zh_TW |
| dc.subject.keyword | Aphelenchoides besseyi,nematode allelochemical,ascarosides,stage separation,climate change,temperature,CO2, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU201903883 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
