Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊爵因zh_TW
dc.contributor.author賴建任zh_TW
dc.contributor.authorJian-ren Laien
dc.date.accessioned2021-07-10T21:50:11Z-
dc.date.available2024-08-18-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation古文華。 2014。 以微流體晶片萃取微生物裂解液中之核酸.
台灣電力公司。 2018。 各類電價表及計算範例-包制電價 ( 107 年 4 月 1 日起實施 ) 適用屋外公共設施、特定之電燈及小型器具: https://www.taipower.com.tw/upload/1417/2018033011504596497.pdf.
台北自來水事業處。 2019。 常見問答--自105年3月1日起水費應繳總金額如何計算?:https://www.water.gov.taipei/News_Content.aspx?n=30E4EDA27F6D9953&sms=87415A8B9CE81B16&s=451916B5DE7ECE31。
行政院農委會動植物防疫檢疫局。 農藥安全資訊資料庫平台http://ghs.baphiq.gov.tw:8080/Chemurgy/enterSearchMaterial.do
朱柏豪。 2017。 什麼是蝕刻 ( Etching ) ? 。 國家奈米元件實驗室奈米通訊 24:29-32。
李灝銘。 2001。 以低溫電漿去除揮發性有機物之研究。 國立中央大學。
吳冠龍。 2012。 台灣中部地區根瘤線蟲族群之鑑定, 寄主範圍變異及演化研究. 中興大學植物病理學系所學位論文:1-171。
吳昭慧。 2012。 百年農業點將錄-臺南區農業改良場綠豆與大豆的研發與推廣. 臺南區農業專訊:21-25。
吳耀庭、黃曉鳳和溫俊祥。 2004。 電漿表面處理在生醫材料上之應用。 工業材料雜誌。
林正忠、袁秋英、陳淑佩、黃振聲、溫宏治和蔡文珊。 2005。 植物保護圖鑑系列 15-番石榴保護。 行政院農業委員會動植物防疫檢疫局 p.96-p.100。
洪元平。 1964。 根瘤線蟲。 植物保護學會會刊,第六卷第一期 p.14-p.29.
徐振哲。 2018。 Plasma Fundamentals I General Physics and Chemistry. 電漿暑期學校課程p.29-p.46。 台灣電漿科技協會。
許如君、吳昌昱。 2015。 農用藥劑分類及作用機制檢索。 行政院農委會動植物防疫檢疫局。
陳殿義、顏志恆。 2015a。台灣地區番石榴根瘤線蟲病害病原種類鑑定與發生現況及其防治策略。海峽兩岸植物病理學術研討會專刊 p.217-p.229。 中華民國植物病理學會。 國立中興大學植物病理學系編印。
陳殿義、顏志恆。2015b。台灣地區紅龍果線蟲病害及防治策略。台灣新浮現之重要作物病害及其防治研討會專刊:137-144。
董家齊和陳寬任。 2002。 奇妙的物質第四態-電漿。 科學發展月刊 354:52-59。
曾巧燕和林奕耀。 2005。 台灣地區葉芽線蟲 Aphelenchoides besseyi 族群之種內變異。Plant Pathology 14:6-8。
馮海東。 2018。 化學農藥十年減半行動方案。 行政院農委會動植物防疫檢疫局。
曾顯雄、曾國欽、張清安、蔡東纂和嚴新富。 2019。 臺灣植物病害名彙第五版。 中華植物保護學會,中華民國植物病理學會。
楊志敏、華筠和王萍。 1994。模擬酸雨對若干種蔬菜生長和生理特性影響的研究。
農業統計年報。 2017。 臺閩地區農產品生產量。 行政院農委會農糧署統計室。
農業藥物毒物試驗所。 2019。 歷年政府禁用之農藥一覽表。
鄭可大。 2010。 從中草藥品種分子鑑定談中草藥品質管制 ( 三 )。 農業知識入口網
http://kmweb.coa.gov.tw/category/categorycontent.aspx?ReportId=20535&CategoryId=2&ActorType=002&kpi=0。
蔡東纂。 1999。 植物寄生性線蟲病害之化學防治。 植物病理學會刊 8:41-50。
蔡東纂。 2010。 近年來國內植物寄生性線蟲之發生與防治。 近年來我國重大作物病害之發生及其診斷、監測與防治研討會專刊: 63-81。
謝錦龍。 2013。 電漿與極光。 國家奈米元件實驗室奈米通訊 20:36-37。
糧食供需年報。 2018。 106年糧食供需年報。 行政院農委會。
Akhtar, M. 1997. Current options in integrated management of plant-parasitic nematodes. Integrated Pest Management Reviews 2:187-197.
Ali Siddiqui, I., Ehetshamul‐Haque, S., and Shahid Shaukat, S. 2001. Use of rhizobacteria in the control of root rot–root knot disease complex of mungbean. Journal of Phytopathology 149:337-346.
Ananthaswamy, H., and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. Journal of Bacteriology 130:187-191.
Anonymous. 2014. Meloidogyne enterolobii. Bulletin OEPP/EPPO Bulletin 44:159-163.
Assoumana, B., Habash, S., Ndiaye, M., Van der Puije, G., Sarr, E., Adamou, H., Grundler, F., and Elashry, A. 2017. First report of the root-knot nematode Meloidogyne enterolobii parasitising sweet pepper ( Capsicum annuum ) in Niger. New Disease Reports 36:18-18.
Baker, M., Feigan, J., and Lowther, D. 1989. The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase. The Journal of Rheumatology 16:7-14.
Bewley, J. D. 1994. Seeds: Germination, structure, and composition. Seeds: physiology of development and germination:1-31.
Bird, A. F., and Bird, J. 2012. The structure of nematodes. Academic Press.
Bhuiyan, S., Garlick, K., Anderson, J., Wickramasinghe, P., and Stirling, G. 2018. Biological control of root-knot nematode on sugarcane in soil naturally or artificially infested with Pasteuria penetrans. Australasian Plant Pathology 47:45-52.
Blok, V. C., and Powers, T. O. 2009. Biochemical and molecular identification. Root-Knot Nematodes:98-118.
Bourne, J. M., Kerry, B., and De Leij, F. 1996. The importance of the host plant on the interaction between root-knot nematodes Meloidogyne spp. and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology 6:539-548.
Brandenburg, R., Ehlbeck, J., Stieber, M., v. Woedtke, T., Zeymer, J., Schlüter, O., and Weltmann, K. D. 2007. Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure Rf‐driven plasma jet. Contributions to Plasma Physics 47:72-79.
Bridge, J., and Page, S. 1980. Estimation of root-knot nematode infestation levels on roots using a rating chart. International Journal of Pest Management 26:296-298.
Brito, J., Stanley, J., Kaur, R., Cetintas, R., Di Vito, M., Thies, J., and Dickson, D. 2007. Effects of the Mi-1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology 39:327.
Cabiscol Català, E., Tamarit Sumalla, J., and Ros Salvador, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology 3: p.3-8.
Carneiro, R. M. D. G., LIMA, F. d. O., and Correia, V. R. 2017. Methods and tools currently used for the identification of plant parasitic nematodes. Embrapa Recursos Genéticos e Biotecnologia-Capítulo em livro científico ( ALICE ).
Castagnone-Sereno, P. 2012. Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14:133-138.
Castagnone-Sereno, P., Danchin, E. G., Perfus-Barbeoch, L., and Abad, P. 2013. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annual Review of Phytopathology 51:203-220.
Chen, Z., and Dickson, D. 1998. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. Journal of Nematology 30:313.
Cole, J., and Brown, C. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiology Letters 7:65-72.
Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. The Plant Cell 7:859.
Crookes, W. 1879. Radiant matter: a resume of the principal lectures and papers of Prof. William Crookes on the ‘fourth state of matter’, Electric Spacecraft, USA.
Das, S., DeMason, D. A., Ehlers, J. D., Close, T. J., and Roberts, P. A. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 59:1305-1313.
de GUIRAN, G., and VILLEMIN, M.-A. 1980. Spécificité de la diapause embryonnaire des œufs de Meloidogyne ( Nematoda ). Revue Nématol 3:115-121.
De Ley, P., De Ley, I. T., Morris, K., Abebe, E., Mundo-Ocampo, M., Yoder, M., Heras, J., Waumann, D., Rocha-Olivares, A., and Jay Burr, A. 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360:1945-1958.
Debprasad, R., Prasad, D., and Singh, R. 2000. Chemical examination and antinemic activity of marigold ( Tagetes erecta L. ) flower. Annals of Plant Protection Sciences 8:212-217.
Dhangar, D., Gupta, D. C., and Jain, R. K. 1995. Effect of marigold ( Tagetes erecta ) intercropped with brinjal in different soil types on disease intensity of root-knot nematode ( Meloidogyne javanica ). Indian Journal of Nematology 25:181-186.
Donkers-Venne, D. T., Fargette, M., and Zijlstra, C. 2000. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2:847-853.
Eisenback, J. D., and Triantaphyllou, H. H. 1991. Root-knot nematodes: Meloidogyne species and races. Manual of Agricultural Nematology 1:191-274.
El-Aziz, M. F. A., Mahmoud, E. A., and Elaragi, G. M. 2014. Non thermal plasma for control of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). Journal of Stored Products Research 59:215-221.
El-Deeb, A., El-Ashry, R., and El-Marzoky, A. 2018. Nematicidal activities of certain animal manures and biopesticides against Meloidogyne incognita infecting cucurbit plants under greenhouse conditions. Journal of Plant Protection and Pathology, Mansoura University 9:265-271.
Elling, A. A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092-1102.
Esbenshade, P., and Triantaphyllou, A. 1990. Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology 22:10.
Evans Adrian A.F. and Perry Roland N. 2009. Survival Mechanism. Root-Knot Nematode. CABI.
Fricke, K., Koban, I., Tresp, H., Jablonowski, L., Schröder, K., Kramer, A., Weltmann, K.-D., von Woedtke, T., and Kocher, T. 2012. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLOS One 7:e42539.
Fridman, A., Nester, S., Kennedy, L. A., Saveliev, A., and Mutaf-Yardimci, O. 1999. Gliding arc gas discharge. Progress in Energy and Combustion Science 25:211-231.
Gabriel, D. W., and Rolfe, B. G. 1990. Working models of specific recognition in plant-microbe interactions. Annual Review of Phytopathology 28:365-391.
Gaunt, L. F., Beggs, C. B., and Georghiou, G. E. 2006. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Transactions on Plasma Science 34:1257-1269.
Gheysen, G., and Mitchum, M. G. 2019. Phytoparasitic nematode control of plant hormone pathways. Plant Physiology 179:1212.
Gomes, V. M., Souza, R. M., Mussi‐Dias, V., Silveira, S. F. d., and Dolinski, C. 2011. Guava decline: a complex disease involving Meloidogyne mayaguensis and Fusarium solani. Journal of Phytopathology 159:45-50.
Graves, D. B. 2014. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Processes and Polymers 11:1120-1127.
Gustin, E., McDonnell, G., Mullen, G., and Gordon, B. 2002. The efficacy of vapour phase hydrogen peroxide against nematode infestation: the Caenorhabditis elegans model. in: American Association for Laboratory Animal Science (AALAS), Annual meeting, San Antonio, TX.
Gutsol, A. 2010. Warm discharges for fuel conversion. Handbook of Combustion: Online:323-353.
Halliwell, B., and Gutteridge, J. M. 2015. Free radicals in biology and medicine. Oxford University Press, USA.
Han, Z., Boas, S., and Schroeder, N. E. 2017. Serotonin regulates the feeding and reproductive behaviors of Pratylenchus penetrans. Phytopathology 107:872-877.
Hartman, K., and Sasser, J. 1985. Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. An Advanced Treatise on Meloidogyne, Volume II: Methodology:69-77.
Hu, M., Zhuo, K., and Liao, J. 2011. Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls. Phytopathology 101:1270-1277.
Hunt, D. J., and Handoo, Z. A. 2009. Taxonomy, identification and principal species. Root-knot Nematodes 1:55-88.
Ito, M., Oh, J. S., Ohta, T., Shiratani, M., and Hori, M. 2018. Current status and future prospects of agricultural applications using atmospheric‐pressure plasma technologies. Plasma Processes and Polymers 15:1700073.
Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla‐López, R., Palomares‐Rius, J. E., and Wesemael, W. M. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14:946-961.
Juanhua, H., Kan, Z., and Borong, L. 2013. Effects of temperature and initial population density on the infection of Meloidogyne enterolobii on tomato plants. Plant Protection.
Kamgang‐Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon‐Fontaine, M. N., Doubla, A., and Naïtali, M. 2009. Microbial inactivation using plasma‐activated water obtained by gliding electric discharges. Letters in Applied Microbiology 48:13-18.
Karajeh, M. 2008. Interaction of root-knot nematode (Meloidogyne javanica) and tomato as affected by hydrogen peroxide. Journal of Plant Protection Research 48:181-187.
Karssen, G., Liao, J., Kan, Z., van Heese, E. Y., and den Nijs, L. J. 2012. On the species status of the root-knot nematode Meloidogyne mayaguensis Rammah & Hirschmann, 1988. ZooKeys:67.
Ke Dong. 2015. Multiplex PCR Identification of Five Common Root‐Knot Nematode Species in California (Meloidogyne arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica). From California Department of Food & Agriculture: https://www.cdfa.ca.gov/plant/ppd/PDF/Multiplex_PCR_Identification_Root-knot_Nematodes.pdf
Khan, M., and Khan, M. 1994. Effects of simulated acid rain and root‐knot nematode on tomato. Plant Pathology 43:41-49.
Kiewnick, S., and Sikora, R. 2006. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control 38:179-187.
Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J. E., and Helder, J. 2014. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology 140:97-110.
Kogelschatz, U. 2003. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing 23:1-46.
Korachi, M., and Aslan, N. 2013. Low temperature atmospheric plasma for microbial decontamination. Microbial Pathogens and strategies for combating them: Science, Technology and Education 1:453-459.
Landis, T. D., and Dumroese, R. K. 2014. Integrated pest management-an overview and update. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. Forest Nursery Notes.
Langmuir, I. 1928. Oscillations in ionized gases. Proceedings of the National Academy of Sciences of the United States of America 14:627.
Li, W., Liu, X., Khan, M. A., and Yamaguchi, S. 2005. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. Journal of Plant Research 118:207-214.
Long, H., Liu, H., and Xu, J. 2006. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica 36:109-115.
Lu, X., Solangi, G. S., Li, D., Zhang, Y., Huang, J., and Liu, Z. 2019. First report of Root-knot nematode Meloidogyne enterolobii on Gardenia jasminoides in China. Plant Disease Vol. 103
Maleita, C., Esteves, I., Cardoso, J. M. S., Cunha, M. J., Carneiro, R. M. D. G., and Abrantes, I. 2018. Meloidogyne luci, a new root‐knot nematode parasitizing potato in Portugal. Plant Pathology, 67 : 366-376.
Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., and Fang, J. 2016. Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food and Bioprocess Technology 9:1825-1834.
McSorley, R., and Frederick, J. 1995. Responses of some common Cruciferae to root-knot nematodes. Journal of Nematology 27:550.
Melillo, M. T., Leonetti, P., Bongiovanni, M., Castagnone‐Sereno, P., and Bleve‐Zacheo, T. 2006. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root‐knot nematode interactions. New Phytologist 170:501-512.
Mitkowski, N., Van der Beek, J., and Abawi, G. 2002. Characterization of root-knot nematode populations associated with vegetables in New York State. Plant Disease 86:840-847.
Moens, M., Perry, R. N., and Starr, J. L. 2009. Meloidogyne species–a diverse group of novel and important plant parasites. Root-Knot Nematodes 1:483.
Mohammadi, S., Sohrab, I., Dorranian, D., Tirgari, S., and Shojaee, M. 2015. The effect of non-thermal plasma to control of stored product pests and changes in some characters of wheat materials. Journal of Biodiversity and Environmental Sciences 7:150-156.
Mohammed, S., El Saedy, M. A., Enan, M. R., Ibrahim, N. E., Ghareeb, A., and Moustafa, S. A. 2008. Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. Journal of Cell and Molecular Biology 7:57-66.
Monteiro, J. M., Cares, J. E., Correa, V. R., Pinheiro, J. B., Mattos, V. S., Silva, J. G., Gomes, A. C., Santos, M. F., Castagnone-Sereno, P., and Carneiro, R. M. 2017. Meloidogyne brasiliensis Charchar & Eisenback, 2002 is a junior synonym of M. ethiopica Whitehead, 1968. Nematology 19:655-669.
Moreira, F. J. C., Silva, M., Rodrigues, A., and Tavares, M. 2015. Alternative control of root-knot nematodes (Meloidogyne javanica and M. enterolobii) using antagonists. International Journal of Agronomy and Agricultural Research 7:121-129.
Nadler, S., Felix, M.-A., Frisse, L., Sternberg, P., De Ley, P., and Thomas, W. K. 1999. Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1:591-612.
Netscher, C., and Taylor, D. 1974. An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica 20:268-269.
Nicol, J., Turner, S., Coyne, D., Den Nijs, L., Hockland, S., and Maafi, Z. T. 2011. Current nematode threats to world agriculture. Pages 21-43 in: Genomics and molecular genetics of plant-nematode interactions. Springer.
Niemira, B. A. 2012. Cold plasma decontamination of foods. Annual Review of Food Science and Technology 3:125-142.
Nusbaum, C., and Ferris, H. 1973. The role of cropping systems in nematode population management. Annual Review of Phytopathology 11:423-440.
Oehmigen, K., Winter, J., Hähnel, M., Wilke, C., Brandenburg, R., Weltmann, K. D., and von Woedtke, T. 2011. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Processes and Polymers 8:904-913.
Orion, D., and Kritzman, G. 2001. A role of the gelatinous matrix in the resistance of root-knot nematode ( Meloidogyne spp. ) eggs to microorganisms. Journal of Nematology 33:203.
Padgham, J., and Sikora, R. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protection 26:971-977.
Park, D. P., Davis, K., Gilani, S., Alonzo, C.-A., Dobrynin, D., Friedman, G., Fridman, A., Rabinovich, A., and Fridman, G. 2013. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Current Applied Physics 13:S19-S29.
Park, Y., Oh, K. S., Oh, J., Seok, D. C., Kim, S. B., Yoo, S. J., and Lee, M. J. 2018. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Processes and Polymers 15:1600056.
Pawlowski, K., and Bisseling, T. 1996. Rhizobial and actinorhizal symbioses: what are the shared features ? The Plant Cell 8:1899.
Perry, R. N., Moens, M., and Starr, J. L. 2009. Root-knot nematodes. CABI.
Powers, T. O., and Harris, T. 1993. A polymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology 25:1-6.
Rich, J., Rahi, G., Opperman, C., and Davis, E. 1989. Influence of the castor bean (Ricinus communis) lectin (ricin) on motility of Meloidogyne incognita. Nematropica 19:99-103.
Ristaino, J. B., and Thomas, W. 1997. Agriculture, methyl bromide, and the ozone hole: can we fill the gaps ? Plant Disease 81:964-977.
Rodriguez-Kabana, R., and King, P. 1980. Use of mixtures of urea and blackstrap molasses for control of root-knot nematodes in soil. Nematropica 10:38-44.
Sahebani, N., and Hadavi, N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry 40:2016-2020.
Sanz, L., Albertos, P., Mateos, I., Sánchez-Vicente, I., Lechón, T., Fernández-Marcos, M., and Lorenzo, O. 2015. Nitric oxide ( NO ) and phytohormones crosstalk during early plant development. Journal of Experimental Botany 66:2857-2868.
Sasser, J., Eisenback, J., Carter, C., and Triantaphyllou, A. 1983. The international Meloidogyne project-its goals and accomplishments. Annual Review of Phytopathology 21:271-288.
Saxena, G. 2018. Biological Control of Root-Knot and Cyst Nematodes Using Nematophagous Fungi. Pages 221-237 in: Root Biology. Springer.
Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., and Fang, J. 2016. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Scientific Reports 6:28505.
Sivachandiran, L., and Khacef, A. 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Advances 7:1822-1832.
Spingh,SP. 2017. Plasma treatment: a potential tool to manage postharvest rots and food safety. New South Wales Department of Primary Industries. https://www.dpi.nsw.gov.au/agriculture/horticulture/citrus/content/post-harvest/articles/plasma-treatment-a-potential-tool-to-manage-postharvest-rots-and-food-safety.
Stoffels, E., Flikweert, A., Stoffels, W., and Kroesen, G. 2002. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of ( bio ) materials. Plasma Sources Science and Technology 11:383.
Subbotin, S. A., Vierstraete, A., De Ley, P., Rowe, J., Waeyenberge, L., Moens, M., and Vanfleteren, J. R. 2001. Phylogenetic relationships within the cyst-forming nematodes ( Nematoda, Heteroderidae ) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution 21:1-16.
Sugiarto, A. T., and Sato, M. 2001. Pulsed plasma processing of organic compounds in aqueous solution. Thin Solid Films 386:295-299.
Taylor, A., and Sasser, J. 1978. Biology, identification and control of root-knot nematodes. North Carolina State University Graphics 111.
Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., and Valdramidis, V. P. 2018. Plasma activated water ( PAW ): chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology 77:21-31.
Tian, Y., Ma, R., Zhang, Q., Feng, H., Liang, Y., Zhang, J., and Fang, J. 2015. Assessment of the physicochemical properties and biological effects of water activated by non‐thermal plasma above and beneath the water surface. Plasma Processes and Polymers 12:439-449.
Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., and Graves, D. B. 2011. Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics 44:472001.
Trinh, Q., Le, T., Nguyen, T., Nguyen, H., Liebanas, G., and Nguyen, T. 2019. Meloidogyne daklakensis n. sp.(Nematoda: Meloidogynidae), a new root-knot nematode associated with Robusta coffee (Coffea canephora Pierre ex A. Froehner) in the Western Highlands, Vietnam. Journal of Helminthology 93:242-254.
Uhlenbroek, J., and Bijloo, J. 1958. Investigations on nematicides: I. Isolation and structure of a nematicidal principe occurring in Tagetes roots. Recueil des Travaux Chimiques des Pays‐Bas 77:1004-1009.
Uhlenbroek, J., and Bijloo, J. 1959. Investigations on nematicides: II. Structure of a second nematicidal principle isolated from Tagetes roots. Recueil des Travaux Chimiques des Pays‐Bas 78:382-390.
Wang, K.-H., Hooks, C., and Ploeg, A. 2007. Protecting crops from nematode pests: using marigold as an alternative to chemical nematicides. Plant Disease 35:1-6.
Weitbrecht, K., Müller, K., and Leubner-Metzger, G. 2011. First off the mark: early seed germination. Journal of Experimental Botany 62:3289-3309.
Waller P.J., Prichard R.K. 1986. Drug Resistance in Nematodes. In: Campbell W.C., Rew R.S. (eds) Chemotherapy of Parasitic Diseases. Springer, Boston, MA
Weller, R., Price, R., Ormerod, A., Benjamin, N., and Leifert, C. 2001. Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. Journal of Applied Microbiology 90:648-652.
Weller, R. B. 2009. Nitric oxide – containing nanoparticles as an antimicrobial agent and enhancer of wound healing. Journal of Investigative Dermatology 129:2335-2337.
Womersley, C., and Ching, C. 1989. Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchulus reniformis. Journal of Experimental Biology 143:359-372.
Xiong, Z. 2018. Cold atmospheric pressure plasmas (CAPs) for skin wound healing. in: Plasma Medicine - Concepts and Clinical Applications. IntechOpen.
Xu, C.-L., Jiao, C.-W., Yu, L., Xie, H., Wang, D.-W., Li, Y., and Cheng, X. 2015. Establishment of new monoxenic culture systems for root-knot nematodes, Meloidogyne spp., on axenic water spinach roots. Nematology 17:725-732.
Xu, Y., Tian, Y., Ma, R., Liu, Q., and Zhang, J. 2016. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry 197:436-444.
Yang, B., and Eisenback, J. 1983. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology 15:381.
Zhang, W., Xu, X., Wei, F., Zou, X., and Zhang, Y. 2018. Influence of dielectric barrier discharge treatment on surface structure of polyoxymethylene fiber and interfacial interaction with cement. Materials 11:1873.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77191-
dc.description.abstract根瘤線蟲 ( Root-knot nemetodes, Meloidogyne spp. ) 為具有全球經濟重要性的植物寄生性線蟲。其寄主範圍廣泛,會使寄主根系形成瘤狀物,影響根系發展,使作物生長不良、葉片黃化、植株矮小等問題,影響農作物之品質與產量。多年來,農民倚賴施用殺線蟲藥劑對根瘤線蟲進行防治。由於殺線蟲劑大多具有神經毒的特性,危害人類健康與影響環境甚鉅,近年來,隨農業永續經營意識提升,數種殺線蟲劑已遭到禁用。剩餘可用的有限藥劑中,許多具有相同作用機制,導致田間線蟲族群已逐漸有抗藥性產生,防治效果不佳。因此,開發新型線蟲防治技術,迫在眉睫。電漿 ( Plasma ) 是自然界中的第四態為游離化的氣體,將其通入水中可製備成電漿激活水 ( Plasma activated water )。有鑒於相關研究指出其對微生物的抑制效果,本研究探討電漿激活水對防治根瘤線蟲之效能及運用之可行性。
本研究以彰化縣溪州鄉所採集的根瘤線蟲為實驗目標,並以 DBD ( Dielectric barrier discharge ) 方式製備的電漿激活水為資材,測試其對線蟲之僵直效果,與盆栽環境中之不同稀釋濃度的電漿激活水對線蟲的預防與治療效果。首先,經陰部膜紋形態鑑定和 PCR 分子及基因序列比對,鑑定出目標線蟲為象耳豆根瘤線蟲 ( Meloidogyne enterolobii ) 以及南方根瘤線蟲 ( Meloidogyne incognita ) 。實驗系統透過以氣體帶動電漿使其通入 ddH2O 的設計,製備成 pH 值為 3、電導度約 300 μs/cm 和氧化還原電位為 580 mv 的電漿激活水。本研究透過擊昏實驗發現,將二齡幼蟲浸泡於稀釋至 75 % 電漿激活水中 2 個小時,能造成 100 % 僵直率。濃度為 90.9 % 的電漿激活水對二齡幼蟲的 KT50 為 64 分鐘,且製備後放置室溫下 60 小時,仍然可對其造成 100 % 僵直率。在 90.9 % 和 98 % 濃度的電漿激活水的綠豆水耕植袋試驗的實驗結果顯示,不論預防組還是治療組,電漿激活水的處理對綠豆的生長情形皆無影響。意外的是,與對照組相比,澆灌電漿激活水的處理組中,根瘤線蟲的根瘤指數較嚴重且根瘤數量、卵塊數和後代數量較多。最後,以高濃度 98 % 電漿激活水進行小白菜的介質穴盤試驗,對根瘤線蟲的防治效果明顯,根瘤指數在對照組最高為 3,而處理組最低為 1;處理組的根瘤數量平均每株 1 ~ 2 個,低於對照組 3 ~ 7 個,且無任何卵塊和卵的產生。此外,不論在預防組或是治療組中,澆灌 98 % 電漿激活水的小白菜生長非常良好,在葉片面積、地上部高度和地上部鮮乾重均明顯大於對照組且達顯著差異。
本論文為首篇探討電漿激活水對植物寄生線蟲的防治效力報告,結果顯示電漿激活水是具有應用潛力之非化學藥劑防治資材,且兼具促進小白菜生長之功效。未來在農業產業鏈中,可將電漿激活水的運用,加入根瘤線蟲病害的綜合管理策略中。
zh_TW
dc.description.abstractRoot-knot nematodes ( Meloidogyne sp. ) are the plant parasitic nematodes of glabal economic importance with broad host range. They induce rootknots on host roots that affect the development of roots, cause poor growth, leaf yellowing, and stunting and lead to poor quality and quantity of crops. For many years, farmers mainly rely on nematicides to control the root-knot nematodes. However, most of the nematicides contain neurotoxins that would heavily jeopardize human health and badly impact the environment. Recent years, several nematicides with high toxicity have been banned due to the raising awareness of sustainable agriculture. However, many of the remained applicable nematicides share the same mode of actions, which likely have gradually led to nematicidal resistance and ineffective management in the fields. Therefore, there is an urgent need for new a nematode control method. Plasma is the fourth state of matter, ionized gas in nature. Plasma activated water ( PAW ) can be produced by diffusing plasma into water. Based on the anti-microbial characteristic of plasma in previous stuidies, this research aimed to investigate the feasibility of applying PAW for root-knot nematode management.
This research used the root-knot nematodes collected from Xizhou township of Changhua county as a target, and the Dielectric Barrier Discharge ( DBD )-prepared PAW as a testing material. With multiple dilute concentration, the in vivo direct killing ability, the in situ pre- and post- infection nematode control efficacy in pot experiments were evaluated. First, the nematode species were identified as Meloidogyne enterolobii and Meloidogyne incognita by the perineal pattern, PCR and gene sequence alignment. Then, 100% plasma activated water was produced by a system that use air to push plasma into ddH2O, and has the characteristics of pH 3, electric conductivity about 300μs/cm, and oxidation reduction potential of 580mv. After soaking the 2nd stage root-knot nematode juveniles in 75% diluted PAW for 2 hours, 100% of the nematode were expressing stiffness. The KT50 of PAW at a concentration of 90.9% for the 2nd stage juveniles was 64 minutes; Even if the PAW was placed at room temperature for 60 hours after preparation, it still reached the 100% nematode stifiness effect. The mung bean hydroponic bag inoculation experiments with treatments of 90.9% and 98% PAW showed that the PAW had no effect to plant growth; no matter if it was treated before or after the nematode inoculation. Unexpectedly, compare to the control group, the PAW-treated groups showed higher galling index and more galls, eggmasses and progenies. On Chinese cabbage, the nematode control with 98% PAW treatment was obvious. The maximum galling index of the control group was 3, and minimum was 1 for of the treatment group. Comparing the average of 3 to 7 galls per plant in the control group, the average number of galls in the treatment group was only 1 to 2 per plant, and without any eggmass. In addition, the Chinese cabbage treated with the 98% PAW grew very well; The leaf size, height, aboveground fresh and dry weights were all significantly larger than the control group.
In sum, this is the first efficacy investigation report of the PAW application for root-knot nematodes management. The result of this study showed that the not only PAW is a material with application potential as a non-chemical nematode management option, it also promotes the growth of Chinese cabbage. In the future, PAW application could be incoperated into the Integrated pest management ( IPM ) strategy against the root-knot nematode in the agriculture industrial chain.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:50:11Z (GMT). No. of bitstreams: 1
ntu-108-R05645010-1.pdf: 124914446 bytes, checksum: 0ee94b8be579808b46ae4ee0ee82ea2a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 ix
圖次索引 xii
壹 、前言 1
1. 根瘤線蟲Meloidogyne spp. 1
1.1 經濟重要性 1
1.2 生活史與病理 2
1.3 環境適應性 3
1.4 防治方式 4
1.5 種類鑑定方法 6
1.6 研究常見培養方法 7
2. 植物 8
2.1 綠豆 8
2.2 小白菜 8
3. 電漿 9
3.1 電漿簡介 9
3.2 製備原理與儀器介紹 9
3.3 產業應用及作用機制 10
3.3.1 電漿的運用潛力 10
3.3.2 農業運用 11
3.3.3 生醫運用 12
3.3.4 工業運用 12
4. 電漿激活水 13
4.1 製備方法 13
4.2 產業應用及作用機制 13
4.2.1 殺菌 13
4.2.2 促進植物生長 13
5. 研究目的 14
貳 、材料方法 15
1. 電漿製造設備(DBD) 15
2. 電漿激活水的製備方法 15
3. 電漿激活水性質測定 16
3.1 電漿處理時間之影響 16
3.2 不同稀釋濃度 16
4. 線蟲材料 17
4.1 材料來源 17
4.1.1 根瘤線蟲種類鑑定 17
4.1.1.1 雌蟲陰部膜紋鑑定 17
4.1.1.2 分子鑑定 17
4.1.1.2.1 Multiplex PCR 17
4.1.1.2.2 定序 19
4.1.1.2.2.1 目標片段增幅 19
4.1.1.2.2.2 含目標片段質體之建構 20
4.1.1.2.2.3 轉殖(Transformation)21
4.1.1.2.2.4 質體純化 22
4.1.1.2.2.5 定序與解序 22
4.2 試驗養殖 23
4.2.1 根瘤線蟲單卵培養 23
5. 電漿激活水對根瘤線蟲的影響 23
5.1 線蟲液製備 23
5.2 對二齡幼蟲之僵直率測定 24
5.2.1 僵直率測定 24
5.2.2 僵直持效性測定 24
5.2.3 KT 50測定 24
5.3 對根瘤線蟲之防治效果 25
5.3.1 綠豆水耕植袋試驗 25
5.3.1.1 預防組 25
5.3.1.2 治療組 26
5.3.1.3 數據分析 27
5.3.2 小白菜介質穴盤試驗 27
5.3.2.1 預防組 27
5.3.2.2 治療組 28
5.3.2.3 數據分析 29
5.3.3 防治成本計算 29
參 、結果 30
1. 電漿激活水性質檢測 30
1.1 電漿處理時間之影響 30
1.2 不同稀釋濃度 31
2. 根瘤線蟲鑑定 31
2.1 雌蟲陰部膜紋鑑定法 31
2.2 二齡幼蟲Multiplex PCR 31
2.3 二齡幼蟲多基因片段序列分析 32
3. 電漿激活水對根瘤線蟲之致死影響 33
3.1 僵直率 33
3.2 僵直持效性 33
3.3 KT 50 34
4. 電漿激活水對根瘤線蟲防治效果 34
4.1 綠豆水耕植袋 34
4.1.1 預防組 34
4.1.2 治療組 35
4.2 小白菜介質穴盤 35
4.2.1 預防組 35
4.2.2 治療組 37
5. 電漿激活水對植株生長勢之影響 39
5.1 綠豆水耕植袋 39
5.2 小白菜介質穴盤 39
6. 防治小白菜介質穴盤成本計算 40
肆、討論 42
伍、參考文獻 51
陸、圖表 70
柒、附錄 103
-
dc.language.isozh_TW-
dc.subject根瘤線蟲zh_TW
dc.subject綠豆zh_TW
dc.subject小白菜zh_TW
dc.subject非化學防治zh_TW
dc.subject電漿激活水zh_TW
dc.subjectChinese cabbageen
dc.subjectMung beanen
dc.subjectNon-chemical controlen
dc.subjectMeloidogyne sp.en
dc.subjectPlasma activated wateren
dc.title根瘤線蟲電漿激活水防治系統之開發與運用zh_TW
dc.titleDevelopment and application of the plasma activated water management system for root-knot nematodesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃榮南;徐振哲;林乃君zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword根瘤線蟲,電漿激活水,非化學防治,小白菜,綠豆,zh_TW
dc.subject.keywordMeloidogyne sp.,Plasma activated water,Non-chemical control,Chinese cabbage,Mung bean,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU201903896-
dc.rights.note未授權-
dc.date.accepted2019-08-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
121.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved