請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77187
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 任昊佳 | zh_TW |
dc.contributor.advisor | Hao-Jia Ren | en |
dc.contributor.author | 熊培成 | zh_TW |
dc.contributor.author | Pei-Chen Hsiung | en |
dc.date.accessioned | 2021-07-10T21:49:57Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G., 2002, A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals: Deep-Sea Research Part Ii-Topical Studies in Oceanography, v. 49, no. 1-3, p. 219-236.
Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollon, J. M., and Middelburg, J. J., 2016, Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum: Biogeosciences, v. 13, no. 8, p. 2441-2451. Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D., 2012, Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O-2: Global Biogeochemical Cycles, v. 26, p. 13. Bohlen, L., Dale, A. W., and Wallmann, K., 2012, Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models: Global Biogeochemical Cycles, v. 26, p. 16. Brandes, J. A., and Devol, A. H., 1997, Isotopic fractionation of oxygen and nitrogen in coastal marine sediments: Geochimica Et Cosmochimica Acta, v. 61, no. 9, p. 1793-1801. Chen, C. T. A., Wang, S. L., Wang, B. J., and Pai, S. C., 2001, Nutrient budgets for the South China Sea basin: Marine Chemistry, v. 75, no. 4, p. 281-300. Chen, Y. F. L., 2005, Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea: Deep-Sea Research Part I-Oceanographic Research Papers, v. 52, no. 2, p. 319-340. Chen, Y. L. L., Chen, H. Y., Lin, Y. H., Yong, T. C., Taniuchi, Y., and Tuo, S. H., 2014, The relative contributions of unicellular and filamentous diazotrophs to N-2 fixation in the South China Sea and the upstream Kuroshio: Deep-Sea Research Part I-Oceanographic Research Papers, v. 85, p. 56-71. Christensen, J. P., 1994, CARBON EXPORT FROM CONTINENTAL SHELVES, DENITRIFICATION AND ATMOSPHERIC CARBON-DIOXIDE: Continental Shelf Research, v. 14, no. 5, p. 547-576. Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., and Zehr, J. P., 2011, Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses: Isme Journal, v. 5, no. 9, p. 1484-1493. Gruber, N., and Galloway, J. N., 2008, An Earth-system perspective of the global nitrogen cycle: Nature, v. 451, no. 7176, p. 293-296. Gruber, N., and Sarmiento, J. L., 1997, Global patterns of marine nitrogen fixation and denitrification: Global Biogeochemical Cycles, v. 11, no. 2, p. 235-266. Guo, Z. T., Berger, A., Yin, Q. Z., and Qin, L., 2009, Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records: Climate of the Past, v. 5, no. 1, p. 21-31. He, J., Zhao, M. X., Wang, P. X., Li, L., and Li, Q. Y., 2013, Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260 ka: Palaeogeography Palaeoclimatology Palaeoecology, v. 392, p. 312-323. Hu, J. Y., and Wang, X. H., 2016, Progress on upwelling studies in the China seas: Reviews of Geophysics, v. 54, no. 3, p. 653-673. Huang, E. Q., Tian, J., and Steinke, S., 2011, Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon: Quaternary Research, v. 75, no. 1, p. 196-204. Jing, Z. Y., Qi, Y. Q., Hua, Z. L., and Zhang, H., 2009, Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea: Continental Shelf Research, v. 29, no. 2, p. 467-478. Kao, S. J., Yang, J. Y. T., Liu, K. K., Dai, M. H., Chou, W. C., Lin, H. L., and Ren, H. J., 2012, Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea: Global Biogeochemical Cycles, v. 26, p. 15. Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L., 2002, Dinitrogen fixation in the world's oceans: Biogeochemistry, v. 57, no. 1, p. 47-+. Kienast, M., Steinke, S., Stattegger, K., and Calvert, S. E., 2001, Synchronous tropical South China Sea SST change and Greenland warming during deglaciation: Science, v. 291, no. 5511, p. 2132-2134. Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M., and Lipschultz, F., 2008, Nitrate isotopic composition between Bermuda and Puerto Rico: Implications for N(2) fixation in the Atlantic Ocean: Global Biogeochemical Cycles, v. 22, no. 3, p. 14. Knapp, A. N., Sigman, D. M., and Lipschultz, F., 2005, N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series study site: Global Biogeochemical Cycles, v. 19, no. 1, p. 17. Kuo, N. J., Zheng, Q. N., and Ho, C. R., 2000, Satellite observation of upwelling along the western coast of the South China Sea: Remote Sensing of Environment, v. 74, no. 3, p. 463-470. Kustka, A., Sanudo-Wilhelmy, S., Carpenter, E. J., Capone, D. G., and Raven, J. A., 2003, A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine cyanobacterium Trichodesmium spp. (Cyanophyta): Journal of Phycology, v. 39, no. 1, p. 12-25. Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M., 2013, Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes: Atmospheric Chemistry and Physics, v. 13, no. 16, p. 7997-8018. Letelier, R. M., and Karl, D. M., 1996, Role of Trichodesmium spp in the productivity of the subtropical North Pacific Ocean: Marine Ecology Progress Series, v. 133, no. 1-3, p. 263-273. Li, D. W., Zhao, M. X., and Chen, M. T., 2014, East Asian winter monsoon controlling phytoplankton productivity and community structure changes in the southeastern South China Sea over the last 185 kyr: Palaeogeography Palaeoclimatology Palaeoecology, v. 414, p. 233-242. Li, L., and Qu, T. D., 2006, Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions: Journal of Geophysical Research-Oceans, v. 111, no. C5, p. 10. Liu, K.-K., Atkinson, L., Quiñones, R., and Talaue-McManus, L., 2010, Carbon and nutrient fluxes in continental margins: a global synthesis, p. 464-482. Liu, K. K., Chao, S. Y., Shaw, P. T., Gong, G. C., Chen, C. C., and Tang, T. Y., 2002, Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study: Deep-Sea Research Part I-Oceanographic Research Papers, v. 49, no. 8, p. 1387-1412. Liu, K. K., Chen, Y. J., Tseng, C. M., Lin, II, Liu, H. B., and Snidvongs, A., 2007, The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observations and numerical investigations: Deep-Sea Research Part Ii-Topical Studies in Oceanography, v. 54, no. 14-15, p. 1546-1574. Liu, Z. Q., and Gan, J. P., 2017, Three-dimensional pathways of water masses in the South China Sea: A modeling study: Journal of Geophysical Research-Oceans, v. 122, no. 7, p. 6039-6054. Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Bostrom, K. H., Bottjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcon, L. I., Fernandez, A., Foster, R. A., Furuya, K., Gomez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Maranon, E., McGillicuddy, D. J., Moisander, P. H., Moore, C. M., Mourino-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P., 2012, Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates: Earth System Science Data, v. 4, no. 1, p. 47-73. Marchesiello, P., and Estrade, P., 2009, Eddy activity and mixing in upwelling systems: a comparative study of Northwest Africa and California regions: International Journal of Earth Sciences, v. 98, no. 2, p. 299-308. Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W., 1987, VERTEX - CARBON CYCLING IN THE NORTHEAST PACIFIC: Deep-Sea Research Part a-Oceanographic Research Papers, v. 34, no. 2, p. 267-285. Martinez-Perez, C., Mohr, W., Loscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R. A., LaRoche, J., and Kuypers, M. M., 2016, The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle: Nature Microbiology, v. 1, no. 11, p. 7. Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G., 1996, A simple, high-precision, high-sensitivity tracer assay for N-2 fixation: Applied and Environmental Microbiology, v. 62, no. 3, p. 986-993. Moore, J. K., Doney, S. C., and Lindsay, K., 2004, Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model: Global Biogeochemical Cycles, v. 18, no. 4, p. 21. Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K., 2013, Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model CESM1(BGC) : Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios: Journal of Climate, v. 26, no. 23, p. 9291-9312. Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., and Shi, J., 2004, Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea: Journal of Geophysical Research-Oceans, v. 109, no. C10, p. 20. Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., Zhu, G., and Shi, J., 2005, Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea (vol 109, art no C10005, 2004): Journal of Geophysical Research-Oceans, v. 110, no. C5, p. 1. Pan, X. J., Wong, G. T. F., Shiah, F. K., and Ho, T. Y., 2012, Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea: Journal of Oceanography, v. 68, no. 3, p. 427-437. Qu, T. D., 2001, Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature: Journal of Geophysical Research-Oceans, v. 106, no. C4, p. 6943-6955. Raymond, J., Siefert, J. L., Staples, C. R., and Blankenship, R. E., 2004, The natural history of nitrogen fixation: Molecular Biology and Evolution, v. 21, no. 3, p. 541-554. Redfield, A. C., 1958, THE BIOLOGICAL CONTROL OF CHEMICAL FACTORS IN THE ENVIRONMENT: American Scientist, v. 46, no. 3, p. 205-221. Ren, H. J., Sigman, D. M., Martinez-Garcia, A., Anderson, R. F., Chen, M. T., Ravelo, A. C., Straub, M., Wong, G. T. F., and Haug, G. H., 2017, Impact of glacial/interglacial sea level change on the ocean nitrogen cycle: Proceedings of the National Academy of Sciences of the United States of America, v. 114, no. 33, p. E6759-E6766. Scavotto, R. E., Dziallas, C., Bentzon-Tilia, M., Riemann, L., and Moisander, P. H., 2015, Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean: Environmental Microbiology, v. 17, no. 10, p. 3754-3765. Shchepetkin, A. F., and McWilliams, J. C., 2005, The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model: Ocean Modelling, v. 9, no. 4, p. 347-404. Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer, G., 2000, The delta N-15 of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior: Journal of Geophysical Research-Oceans, v. 105, no. C8, p. 19599-19614. Tai, J. H., Wong, G. T. F., and Pan, X. J., 2017, Upper water structure and mixed layer depth in tropical waters: The SEATS station in the northern South China Sea: Terrestrial Atmospheric and Oceanic Sciences, v. 28, no. 6, p. 1019-1032. Tan, S. C., and Shi, G. Y., 2009, Spatiotemporal variability of satellite-derived primary production in the South China Sea, 1998-2006: Journal of Geophysical Research-Biogeosciences, v. 114, p. 11. Tian, J. W., and Qu, T. D., 2012, Advances in research on the deep South China Sea circulation: Chinese Science Bulletin, v. 57, no. 24, p. 3115-3120. Tian, J. W., Yang, Q. X., Liang, X. F., Xie, L. L., Hu, D. X., Wang, F., and Qu, T. D., 2006, Observation of Luzon Strait transport: Geophysical Research Letters, v. 33, no. 19, p. 6. Wong, G. T. F., Pan, X. J., Li, K. Y., Shiah, F. K., Ho, T. Y., and Guo, X. H., 2015, Hydrography and nutrient dynamics in the Northern South China Sea Shelf-sea (NoSoCS): Deep-Sea Research Part Ii-Topical Studies in Oceanography, v. 117, p. 23-40. Wong, G. T. F., Tseng, C. M., Wen, L. S., and Chung, S. W., 2007, Nutrient dynamics and N-anomaly at the SEATS station: Deep-Sea Research Part Ii-Topical Studies in Oceanography, v. 54, no. 14-15, p. 1528-1545. Wu, C. R., and Hsin, Y. C., 2012, The forcing mechanism leading to the Kuroshio intrusion into the South China Sea: Journal of Geophysical Research-Oceans, v. 117, p. 9. Wyrtki, K., 1961, Physical oceanography of the Southeast Asian waters. Xu, F. H., and Oey, L. Y., 2014, State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea: Ocean Dynamics, v. 64, no. 6, p. 905-923. Yang, S., and Gruber, N., 2016, The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the N-15 Haber-Bosch effect: Global Biogeochemical Cycles, v. 30, no. 10, p. 1418-1440. Zehr, J. P., Shilova, I. N., Farnelid, H. M., Munoz-Marin, M. C., and Turk-Kubo, K. A., 2017, Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A: Nature Microbiology, v. 2, no. 1, p. 10. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77187 | - |
dc.description.abstract | 大陸棚地區中的海洋生產力極高,主要是由於該地區的海表層與海底距離差距不大,易使營養鹽在兩者之間快速循環,再加上河流、大陸邊緣湧升流所帶來的大量額外營養鹽,造成該地區孕育了將近二分之一的全球海洋生產力。另外大陸棚地區在海洋的氮循環中亦扮演了重要的角色,例如: 底棲脫氮作用便易發生於大陸棚上。生物死亡後的碎屑在沉降至海底時,一部分會被再礦化,剩餘的則會被埋藏至沈積物中,而在沈積物中的碎屑被分解的同時,會消耗氧氣,當氧氣被消耗至一定程度時,底棲脫氮作用便會發生,並將硝酸鹽轉化成氮氣,減少海洋系統中生物可利用的氮。故大陸棚的高生產力以及海表層與海底間的短差距,導致有較多有機物被埋藏在該地區並發生大量底棲脫氮作用。
然而在過去冰期與間冰期的循環中,海平面的快速變化影響大陸棚面積甚多,但其生產力以及全球氮循環的變化還未被研究透徹,因此本研究致力於海平面的變化對此兩者的影響。研究中我們使用了區域海洋模擬系統(Regional Oceanic Modeling System, ROMS)進行探討,此系統包含多種營養鹽的循環、數種海洋生物以及兩者之間的相互作用,並選定南中國海作為研究區域,主要是因為該區域是世界上最大的邊緣海之一,且大陸棚與海盆的面積比例相當高。我們進行了兩次模擬,第一個模擬代表現今海洋的狀況,第二個模擬只調降海平面120米而不變動其他参數設定,並進行兩者之間的比較,以得到海平面對生產力以及氮循環的影響。 我們的結果顯示在降低海平面120米的模擬中,因為大陸棚的消失,使海洋生產力(從799 下降至358太克碳每年)以及海洋的底棲脫氮作用(從2.7下降至0.4太克氮每年)都有著顯著的下降。儘管從河流的養分被帶至低海平面的大陸斜坡上,但因大陸斜坡在留置這些養分的效率不佳,再加上大陸邊緣湧升流的強度降低,使得邊緣海洋的生產力在低海平面時急劇下降,而在生產力下降的同時,有機顆粒碳的沉降量也減少,導致底棲脫氮的作用速率降低,這將對全球的氮循環影響甚巨。 | zh_TW |
dc.description.abstract | Marginal ocean accounts for over 50% of the modern global ocean productivity, which to a large degree rely on the shallow continental shelves. Continental nutrient input in addition to enhanced vertical mixing at the continental break brings in new nutrients to support primary productivity. This is maintained by efficient nutrient recycling from productivity at the surface, remineralization at depth, and mixing back to the surface on the shallow continental shelves. Associated with the productive system, continental shelves are also important for the global nutrient cycle. One example is denitrification, the process that converts nitrate to N2 gas, thus removes biologically available nitrate from the ocean. Denitrification, when occurring in the sediments, is often associated with high organic fluxes, which drives sedimentary anoxia. It is thus considered that sedimentary denitrification (or benthic denitrification) mostly occurs in the continental shelf sediments, where high productivity in the surface ocean and shallow water column result in high organic fluxes into the sediments. Over the recent glacial/interglacial cycles over the Pleistocene, rapid changes in sea level stand across the terminations should have fundamentally altered the marginal ocean, yet the impacts on productivity and global nutrient cycles are not clearly understood.
In this study, we intend to use South China Sea (SCS) as a case study, and explore the dynamic of the nutrient cycle and the surface productivity associated with sea level changes that represent present and Ice Age scenario, using Regional Oceanic Modeling System (ROMS), with multiple nutrient cycles and phytoplankton groups. SCS, one of the largest marginal seas in the world and one with the highest shelf/basin area ratio, loses almost all of its shallow shelves in the peak glacial due to sea level drop. Thus, it is an ideal location to understand shelf nutrient dynamics across different climatic regimes. In order to assess the direct influence of sea level changes, all the other forcing, including river input, temperature and wind fields, are maintained between the two simulations. Our results show a significant decrease in the primary production (from 799 to 358 Tg C/y) and benthic denitrification rate (from 2.7 to 0.4 Tg N/y) in the SCS at the low sea level case, associated with the loss of shallow continental shelves. Despite the extension of riverine nutrient input to the continental slope at the low sea level stands, the marginal ocean at low sea level stand lose its efficiency in trapping these nutrients, in addition to weakened nutrient mixing at the present-day continental breaks, both of which may contribute to the significant reduction in marginal ocean productivity. In the meantime, the decrease of benthic denitrification at low sea level stand could have caused a global impact in the marine nitrogen cycle. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:57Z (GMT). No. of bitstreams: 1 ntu-108-R05224109-1.pdf: 3261192 bytes, checksum: ff9f30f3ebe889b837398a6a4a969b0a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Statement of responsibilities and contributions i
致謝 ii 中文摘要 iii Abstract iv Table of Figures vii Table of Tables viii Table of Equations ix 1. Introduction 1 1-1 Motivation 1 1-2 Oceanography background 3 1-3 Nitrogen cycle 7 2. Method 10 2-1 Model description 10 2-2 Marine nitrogen cycle model 12 2-2-1 Overview of marine nitrogen cycle 12 2-2-2 Modeling equations 13 3. Result 15 3-1 Physical parameter comparison with observational data 15 3-2 Chlorophyll, productivity, and NO3- comparison 18 3-3 The modern simulation results regarding N cycle 21 3-4 The low sea level simulation results 25 4. Discussion 30 4-1 Comparison of modern N fixation and benthic denitrification rate with previous studies 30 4-2 Coastal productivity changes between modern and LSL simulation 33 4-3 The interpretation of decline denitrification 36 4-4 Changes in N fixation rate 38 4-5 Model limitations and implications for our results 40 5. Conclusion 42 6. Reference 43 | - |
dc.language.iso | en | - |
dc.title | 海平面變化對南海大陸棚生產力及脫氮作用的模式研究 | zh_TW |
dc.title | Modeling the impact of sea level change on shelf productivity and benthic denitrification in the South China Sea | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 施路易;賀施琳 | zh_TW |
dc.contributor.oralexamcommittee | Ludvig Lowemark;Sze Ling Ho | en |
dc.subject.keyword | 底棲脫氮作用,海洋生產力,南中國海,區域海洋模擬系統,海平面變化, | zh_TW |
dc.subject.keyword | Benthic denitrification,Productivity,South China Sea,ROMS,Sea level change, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU201903805 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-18 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。