Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡幸真
dc.contributor.authorPou-I Tongen
dc.contributor.author湯寶怡zh_TW
dc.date.accessioned2021-07-10T21:49:23Z-
dc.date.available2021-07-10T21:49:23Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-20
dc.identifier.citation1. Witschi, H. A Short History of Lung Cancer. Toxicol. Sci. 64, 4–6 (2001).
2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA. Cancer J.
Clin. 68, 7–30 (2018).
3. 2017 Statistics of Causes of Death, the Ministry of Health and Welfare (Taiwan).
4. Pelosof, L. et al. Proportion of Never-Smoker Non–Small Cell Lung Cancer
Patients at Three Diverse Institutions. JNCI J. Natl. Cancer Inst. 109, (2017).
5. Fulco, M. Higher than Usual Lung Cancer Incidence in Taiwanese Non-
smokers. Taiwan Business TOPICS (2018). Available at:
https://topics.amcham.com.tw/2018/03/higher-usual-lung-cancer-incidence- taiwanese-non-smokers/. (Accessed: 21st July 2019)
6. American Cancer Society. Lung Cancer (Non-Small Cell) Detailed Guide. 2016.
7. Cheng, T.-Y. D. et al. The International Epidemiology of Lung Cancer: Latest
Trends, Disparities, and Tumor Characteristics. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 11, 1653–1671 (2016).
8. Surveillance, Epidemiology, and End Results (SEER) 18 2008-2014, National
Cancer Institute. All Races, Both Sexes by SEER Summary Stage 2000
9. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new
cancer-associated genes. Nature 499, 214 (2013).
10. Oronsky, B. et al. Navigating the ‘No Man’s Land’ of TKI-Failed EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC): A Review. Neoplasia N. Y. N 20, 92–98 (2017).
11. Coche, E. Evaluation of lung tumor response to therapy: Current and emerging
techniques. Diagn. Interv. Imaging 97, 1053–1065 (2016).
12. Nishino, M., Hatabu, H., Johnson, B. E. & McLoud, T. C. State of the Art:
Response Assessment in Lung Cancer in the Era of Genomic Medicine. Radiology 271, 6–27 (2014).
13. Aziz, F. Endobronchial ultrasound-guided transbronchial needle aspiration for
staging of lung cancer: a concise review. Transl. Lung Cancer Res. 1, 208–213 (2012).
14. Neumann, M. H. D., Bender, S., Krahn, T. & Schlange, T. ctDNA and CTCs in
Liquid Biopsy – Current Status and Where We Need to Progress. Comput. Struct. Biotechnol. J. 16, 190–195 (2018).
15. Goud, K. I. Molecular Diagnosis of Lung Cancers. Mol. Enzymol. Drug Targets 1, (2015).
16. Sholl, L. Molecular diagnostics of lung cancer in the clinic. Transl. Lung Cancer Res. 6, 560–569 (2017).
17. Mitsudomi, T., Suda, K. & Yatabe, Y. Surgery for NSCLC in the era of personalized medicine. Nat. Rev. Clin. Oncol. 10, 235–244 (2013).
18. Schmid, K. et al. EGFR/KRAS/BRAF Mutations in Primary Lung Adenocarcinomas and Corresponding Locoregional Lymph Node Metastases.
Clin. Cancer Res. 15, 4554–4560 (2009).
19. Román, M. et al. KRAS oncogene in non-small cell lung cancer: clinical
perspectives on the treatment of an old target. Mol. Cancer 17, 33 (2018).
20. De Luca, A., Maiello, M. R., D’Alessio, A., Pergameno, M. & Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16 Suppl 2, S17-27 (2012).
21. Pao, W. & Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175–180 (2011).
22. Raimbourg, J. et al. Sensitization of EGFR Wild-Type Non-Small Cell Lung Cancer Cells to EGFR-Tyrosine Kinase Inhibitor Erlotinib. Mol. Cancer Ther. 16, 1634–1644 (2017).
23. Thress, K. S. et al. Acquired EGFR C797S mediates resistance to AZD9291 in advanced non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).
24. Steuer, C. E. & Ramalingam, S. S. Targeting EGFR in lung cancer: Lessons learned and future perspectives. Mol. Aspects Med. 45, 67–73 (2015).
25. Metro, G. et al. Impact of specific mutant KRAS on clinical outcome of EGFR-
TKI-treated advanced non-small cell lung cancer patients with an EGFR wild type genotype. Lung Cancer 78, 81–86 (2012).
26. Garrido, P. et al. Treating KRAS-mutant NSCLC: latest evidence and clinical consequences. Ther. Adv. Med. Oncol. 9, 589–597 (2017).
27. Román, M. et al. KRAS oncogene in non-small cell lung cancer: clinical
perspectives on the treatment of an old target. Mol. Cancer 17, 33 (2018).
28. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
29. Golding, B., Luu, A., Jones, R. & Viloria-Petit, A. M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol. Cancer 17, 52 (2018).
30. Garinet, S., Laurent-Puig, P., Blons, H. & Oudart, J.-B. Current and Future Molecular Testing in NSCLC, What Can We Expect from New Sequencing Technologies? J. Clin. Med. 7, (2018).
31. Castellanos, E., Feld, E. & Horn, L. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 12, 612–623 (2017).
32. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20
33. Dupont, C., Armant, D. R. & Brenner, C. A. Epigenetics: Definition, Mechanisms and Clinical Perspective. Semin. Reprod. Med. 27, 351–357 (2009).
34. Weinhold, B. Epigenetics: The Science of Change. Environ. Health Perspect.
114, A160–A167 (2006).
35. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–
21 (2002).
36. Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription
and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).
37. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).
38. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function.
Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 38, 23–
38 (2013).
39. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes
Dev. 25, 1010–1022 (2011).
40. Heller, G. et al. Genome-wide CpG island methylation analyses in non-small
cell lung cancer patients. Carcinogenesis 34, 513–521 (2013).
41. Bjaanæs, M. M. et al. Genome‐wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis. Mol. Oncol. 10, 330–343 (2016).
42. Di Fiore, R., D’Anneo, A., Tesoriere, G. & Vento, R. RB1 in cancer: different
mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J. Cell. Physiol. 228, 1676–1687 (2013).
43. Livingstone, C. IGF2 and cancer. Endocr. Relat. Cancer 20, R321-339 (2013).
44. Ahn, S.-J. et al. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res. 34, 4939–4948 (2014).
45. Brock, M. V. et al. DNA Methylation Markers and Early Recurrence in Stage I
Lung Cancer. N. Engl. J. Med. 358, 1118–1128 (2008).
46. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
47. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy:
monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472 (2013).
48. Santarpia, M. et al. Liquid biopsy for lung cancer early detection. J. Thorac. Dis. 10, S882–S897 (2018).
49. Wang, J., Chang, S., Li, G. & Sun, Y. Application of liquid biopsy in precision
medicine: opportunities and challenges. Front. Med. 11, 522–527 (2017).
50. Mandel, P. & Metais, P. Les acides nucleiques du plasma sanguin chez
l’homme. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).
51. Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA.
J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 32, 579–586 (2014).
52. Delgado PO, Alves BC, Gehrke Fde S, et al: Characterization of cell-free
circulating DNA in plasma in patients with prostate cancer. Tumour Biol
34:983-986, 2013
53. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies
into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).
54. Y. M. Lo, K. C. A. Chan, H. Sun, E. Z. Chen, P. Jiang, F. M. F. Lun, Y. W. Zheng, T. Y. Leung, T. K. Lau, C. R. Cantor, R. W. K. Chiu, Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91 (2010).
55. Heitzer, E. & Speicher, M. R. One size does not fit all: Size-based plasma DNA
diagnostics. Sci. Transl. Med. 10, eaav3873 (2018).
56. Volik, S., Alcaide, M., Morin, R. D. & Collins, C. Cell-free DNA (cfDNA):
Clinical Significance and Utility in Cancer Shaped By Emerging Technologies.
Mol. Cancer Res. 14, 898–908 (2016).
57. Mouliere, F. et al. High Fragmentation Characterizes Tumour-Derived
Circulating DNA. PLoS ONE 6, (2011).
58. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment
size analysis. Sci. Transl. Med. 10, (2018).
59. Akca, H. et al. Utility of serum DNA and pyrosequencing for the detection of
EGFR mutations in non-small cell lung cancer. Cancer Genet. 206, 73–80 (2013).
60. Ignatiadis, M. & Dawson, S.-J. Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 25, 2304–2313 (2014).
61. Yang M, Topaloglu U, Petty WJ et al. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages. J Hematol Oncol 2017; 10(1): 100.
62. Vidal, J. et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28, 1325–1332 (2017).
63. Wang, H. et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer. Eur. J. Cancer Oxf. Engl. 1990 88, 92–100 (2018).
64. Li, J. et al. Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol. Oncol. 11, 1099–1111 (2017).
65. Harris, F. R. et al. Quantification of Somatic Chromosomal Rearrangements in Circulating Cell-Free DNA from Ovarian Cancers. Sci. Rep. 6, 29831 (2016).
66. Widschwendter, M. et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 9, (2017).
67. Frattini, M. et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 263, 170–181 (2008).
68. Thierry, A. R. et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38, 6159–6175 (2010).
69. Todenhöfer, T., Struss, W. J., Seiler, R., Wyatt, A. W. & Black, P. C. Liquid Biopsy-Analysis of Circulating Tumor DNA (ctDNA) in Bladder Cancer. Bladder Cancer Amst. Neth. 4, 19–29
70. Yang, M. et al. Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann. Oncol. 29, 311–323 (2018).
71. Gorgannezhad, L., Umer, M., Islam, M. N., Nguyen, N.-T. & Shiddiky, M. J. A.
Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent
advances in detection technologies. Lab. Chip 18, 1174–1196 (2018).
72. Kwapisz, D. The first liquid biopsy test approved. Is it a new era of mutation
testing for non-small cell lung cancer? Ann. Transl. Med. 5, 46 (2017).
73. Zhou, Q. et al. Serial cfDNA assessment of response and resistance to EGFR-
TKI for patients with EGFR-L858R mutant lung cancer from a prospective
clinical trial. J. Hematol. Oncol.J Hematol Oncol 9, 86 (2016).
74. Sorensen, B. S. et al. Monitoring of epidermal growth factor receptor tyrosine
kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of
patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer 120, 3896–3901 (2014).
75. Ooki, A. et al. A Panel of Novel Detection and Prognostic Methylated DNA
Markers in Primary Non–Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 23, 7141–7152 (2017).
76. Balgkouranidou, I. et al. Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br. J. Cancer 110, 2054 (2014).
77. Church, T. R. et al. Prospective evaluation of methylated SEPT9 in plasma for
detection of asymptomatic colorectal cancer. Gut 63, 317–325 (2014).
78. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers
using circulating tumor DNA. Sci Transl Med 2017;9:eaan2415.
79. Worm Ørntoft MB. Review of Blood-Based Colorectal Cancer Screening: How
Far Are Circulating Cell-Free DNA Methylation Markers From Clinical
Implementation? Clin Colorectal Cancer 2018;17:e415–e33.
80. Worm Ørntoft MB, Jensen SO, Hansen TB, et al. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA. Epigenetics 2017;12:626–36.
81. Kristensen, L. S. & Hansen, L. L. PCR-based methods for detecting single-
locus DNA methylation biomarkers in cancer diagnostics, prognostics, and
response to treatment. Clin. Chem. 55, 1471–1483 (2009).
82. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).
83. Macías-González, M. et al. Decreased blood pressure is related to changes in
NF-kB promoter methylation levels after bariatric surgery. Surg. Obes. Relat.
Dis. Off. J. Am. Soc. Bariatr. Surg. 14, 1327–1334 (2018).
84. McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect
residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, (2019).
85. Melani, C. & Roschewski, M. Molecular Monitoring of Cell-Free Circulating
Tumor DNA in Non-Hodgkin Lymphoma. Oncol. Williston Park N 30, 731–
738, 744 (2016).
86. Ossandon, M. R. et al. Circulating Tumor DNA Assays in Clinical Cancer
Research. J. Natl. Cancer Inst. 110, 929–934 (2018).
87. Huang, C.-C., Du, M. & Wang, L. Bioinformatics Analysis for Circulating Cell-
Free DNA in Cancer. Cancers 11, (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77173-
dc.description.abstract肺癌目前高居全球所有癌症死亡率的首位,雖然肺癌的治療在過去數十年有顯著的突破,然而肺癌病患的五年存活率仍只有18.6%,反映臨床上對於選擇合適的治療方案及評估治療效果時面臨挑戰。血液中的游離腫瘤DNA (Circulating tumor DNA; ctDNA)是因腫瘤細胞壞死、凋亡或分泌作用所釋放出的DNA,其會進入血液循環,具備與腫瘤細胞相同的突變或DNA甲基化(DNA methylation)特徵。DNA methylation是一種主要的表觀遺傳(Epigenetic)調控機制,在肺癌的致癌過程中,腫瘤抑制基因(Tumor suppressor gene)的啟動子(Promoter)附近的CpG位點區域會發生高度甲基化(Hypermethylation),引起抑癌基因轉錄失活,從而導致癌細胞的產生,故透過監測ctDNA之異常甲基化程度及濃度水平可用於動態追蹤治療效果與病情進展。
本實驗室過去為了找出肺癌疾病監測之生物標記,使用台大醫院與美國癌症基因體圖譜計畫(The Cancer Genome Altas; TCGA)的資料庫分析得出最佳之基因組合,對於偵測肺癌細胞株、肺癌組織及健康人周邊血液單核球細胞之甲基化程度,敏感度及特異度皆高達9成以上,因此,本研究將延伸至利用微滴式數位核酸偵測系統(Droplet digital PCR; ddPCR)偵測台大醫院肺癌病患血漿中的甲基化ctDNA。結果顯示,病人的ctDNA濃度明顯高於健康受試者的游離DNA濃度,並且癌細胞的ctDNA片段長度平均較一般游離DNA短;通過偵測本四基因組合於肺癌患者的ctDNA及健康人的游離DNA之甲基化程度,發現病患的ctDNA甲基化程度較高,反之於健康人的游離DNA甲基化程度較低,且敏感度及特異度皆超過8成以上,證明本基因組合的確具有肺癌特異性;除此之外,我們利用測得之肺癌患者甲基化ctDNA與臨床資料比對分析,不僅發現ctDNA甲基化程度確實與病患的治療反應和病情發展有明顯關係,而且透過本候選基因組合測得病患ctDNA甲基化程度上升,能夠比影像學檢查更早發現病情的惡化,具有追蹤與預測病情發展的作用,因此可知本基因組合極具發展成為肺癌疾病監測之生物標記的潛力。未來我們將會分析更多肺癌患者的ctDNA和健康受試者的游離DNA樣本,進一步優化此候選基因組合,期望透過本研究的執行,發展可監控肺癌病情與復發之生物標誌物,以建立低侵入性的肺癌疾病監測方法,未來或可供醫師進行臨床治療之參考。
zh_TW
dc.description.abstractLung cancer is the leading cause of cancer deaths worldwide. Despite the advancement of treatment for lung cancer, the overall 5-year survival rate for all types of lung cancer patients is still around 18.6% due to drug resistance or disease progression under treatment. Therefore, developing biomarkers for disease monitoring and drug response evaluation in a timely fashion will facilitate adjusting treatment plan to improve patients’ clinical outcome. Circulating tumor DNA (ctDNA) is released into bloodstream by necrosis, apoptosis or secretion of circulating tumor cells (CTCs). ctDNA fragments contain the same genetic alterations and epigenetic changes as those found in the primary tumors. DNA methylation is a major mechanism of epigenetic regulation. Hypermethylation, which often occurs in the CpG islands near the promoter of tumor suppressor genes, is a hallmark of carcinogenic process. As a result, use of methylated ctDNA as a blood-based biomarker represents a promising strategy for disease monitoring.
In order to identify candidate methylated genes as biomarkers for lung cancer, our lab has found a four-gene combination from the lung cancer methylation database of National Taiwan University Hospital (NTUH) and the Cancer Genome Altas (TCGA). Moreover, we have previously validated the methylation levels of four probes in primary lung cancer tissues, lung cancer cell lines and peripheral blood mononuclear cells (PBMC) from healthy volunteers. The sensitivity and specificity of the four-gene combination are as high as 90%. In this thesis study, we examined methylation levels of the four gene panel in plasma cfDNA from non-small cell lung cancer (NSCLC) patients in NTUH by using methylation-specific droplet digital PCR (MS-ddPCR). The results showed that the concentrations of ctDNA in patients were significantly higher than those in healthy subjects, and the size of ctDNA fragments originated from tumor cells were shorter than cfDNA fragments originated from normal cells. We also found that our four-gene combination had higher levels of ctDNA methylation in lung cancer patients as compared with healthy volunteers, the gene panel yielded a sensitivity of 82.19% and specificity of 85%, suggesting that this four-gene panel was highly cancer-specific. In addition, we explored the clinical applicability of this combination by longitudinally monitoring the dynamics of ctDNA methylation levels and their relationships with treatment response in lung cancer patients. We discovered a significant association between ctDNA methylation levels and tumor burden dynamics, the changes in ctDNA methylation levels may predict disease progression following initial favorable therapeutic responses, which was even earlier than radiological assessment in the clinic. In summary, our gene panel showed the potential clinical utility as biomarkers for disease monitoring in patients with NSCLC. In the future, we will study more samples from patients and healthy volunteers to further optimize this 4-probe combination. This study provides a foundation for developing minimally-invasive blood-based assays for monitoring treatment response and disease progression in lung cancer patients.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:49:23Z (GMT). No. of bitstreams: 1
ntu-108-R06447013-1.pdf: 3220949 bytes, checksum: 131550f1b0e9caa16b16963661a4a9d3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents序言及謝辭 i
中文摘要 ii
Abstract iv
Contents vii
List of Figures xi
List of Tables xiii
List of Abbreviations xv
1. Introduction 1
1.1 Lung cancer 1
1.2 Driver mutations in non-small cell lung cancer (NSCLC) 4
1.3 Epigenetics 6
1.3.1 Definition of epigenetics and DNA methylation 6
1.3.2 DNA methylation changes in lung cancer 8
1.4 Liquid biopsy 10
1.4.1 Characteristics and application of liquid biopsy 10
1.4.2 Circulating cell-free tumor DNA 11
1.5 Methylated cfDNA as biomarkers in lung cancer 12
1.5.1 Literature review of methylated cfDNA in lung cancer 12
1.5.2 Assays of methylated cfDNA measurement 14
1.6 Previous data from our laboratory 15
1.6.1 Identification of a 4-gene combination as methylated biomarker in lung cancer 15
1.6.2 Validation of candidate methylated four-gene combination in lung cancer tissues, lung cancer cell lines and peripheral blood mononuclear cells (PBMC) 16
1.6.3 Primers and probes of candidate methylated four-gene combination for droplet digital methylation-specific PCR (ddMSP) 17
1.7 Aims of the study 18
2. Materials & Methods 19
2.1 Identification of candidate genes with cancer-specific methylation in lung cancer The Cancer Genome Atlas (TCGA) 19
2.2 Study participants and samples 20
2.3 Processing of blood samples 21
2.4 DNA extraction of lung cancer cell lines using 1-Bromo-3-chloropropane (BCP) washed method 21
2.5 Cell-free DNA extraction from plasma samples using 1-Bromo-3-chloropropane (BCP) washed method 22
2.6 Cell-free DNA extraction from plasma using the magnetic bead-based method 23
2.7 Sodium bisulfite conversion of plasma cell-free DNA 25
2.8 Cell-free DNA concentration measurement by Qubit 2.0 Fluorometer 27
2.9 Cell-free DNA fragment size analysis by Agilent 2100 Bioanalyzer or Qsep100 DNA Analyzer 29
2.10 Droplet digital methylation-specific PCR (ddMSP) for methylated DNA quantification 30
2.11 Statistical analysis 32
3. Results 33
3.1 Protocol optimization for methylated cfDNA analysis (Table 3) 33
3.1.1 Testing duplex and triplex conditions using ddMSP 33
3.1.2 Optimization of sample processing for cell-free DNA 35
3.2 Quality control of cell-free DNA in the plasma from healthy volunteers and lung cancer patients 37
3.3 Methylation status of the four-probe combination in cell-free DNA from plasma samples of NSCLC patients and healthy volunteers 38
3.4 Longitudinal assessment of association between methylation level in ctDNA dynamics and clinicopathological features in NSCLC patients 40
3.5 Application of methylated ctDNA in monitoring therapy response in individual lung cancer patients 42
4. Discussion 44
5. Conclusion 48
6. References 49
7. Figures 62
8. Tables 92
9. Supplementary Figures 96
dc.language.isozh-TW
dc.subject疾病監測zh_TW
dc.subject循環甲基化核酸zh_TW
dc.subject表觀遺傳zh_TW
dc.subject體液活檢zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectLiquid biopsyen
dc.subjectDisease monitoringen
dc.subjectCirculating tumor DNAen
dc.subjectEpigeneticsen
dc.subjectNon-small cell lung canceren
dc.title循環甲基化去氧核醣核酸作為非小細胞肺癌疾病監測的生物標誌物之研究zh_TW
dc.titleCirculating methylated DNA as a biomarker for disease monitoring in non-small cell lung canceren
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宏志,張永祺
dc.subject.keyword非小細胞肺癌,體液活檢,表觀遺傳,循環甲基化核酸,疾病監測,zh_TW
dc.subject.keywordNon-small cell lung cancer,Liquid biopsy,Epigenetics,Circulating tumor DNA,Disease monitoring,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201904079
dc.rights.note未授權
dc.date.accepted2019-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06447013-1.pdf
  未授權公開取用
3.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved