Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何佳安zh_TW
dc.contributor.author曾昱清zh_TW
dc.contributor.authorYu-Ching Tsengen
dc.date.accessioned2021-07-10T21:49:19Z-
dc.date.available2024-08-23-
dc.date.copyright2019-08-28-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] aJ. J. Granados-Romero, A. I. Valderrama-Treviño, E. H. Contreras-Flores, B. Barrera-Mera, M. Herrera Enríquez, K. Uriarte-Ruíz, J. C. Ceballos-Villalba, A. G. Estrada-Mata, C. Alvarado Rodríguez, G. Arauz-Peña, International Journal of Research in Medical Sciences 2017, 5, 4667-4676; bH. Brenner, M. Kloor, C. P. Pox, The Lancet 2014, 383, 1490-1502.
[2] aI. Marmol, C. Sanchez-de-Diego, A. Pradilla Dieste, E. Cerrada, M. J. Rodriguez Yoldi, Int J Mol Sci 2017, 18, 197; bM. De Rosa, U. Pace, D. Rega, V. Costabile, F. Duraturo, P. Izzo, P. Delrio, Oncol Rep 2015, 34, 1087-1096.
[3] M. Astin, T. Griffin, R. D. Neal, P. Rose, W. Hamilton, Br J Gen Pract 2011, 61, e231-243.
[4] L. H. Xu, S. J. Cai, G. X. Cai, W. J. Peng, World J Gastroenterol 2011, 17, 4654-4659.
[5] A. I. Valderrama-Treviño, B. Barrera-Mera, J. C. Ceballos-Villalva, E. E. Montalvo-Javé, Euroasian J Hepatogastroenterol 2017, 7, 166-175.
[6] S. Jegatheeswaran, J. M. Mason, H. C. Hancock, A. K. Siriwardena, JAMA Surg. 2013, 148, 385-391.
[7] aJ. Rothbarth, C. J. van de Velde, Ann Oncol 2005, 16 Suppl 2, ii144-149; bS. Vatandoust, T. J. Price, C. S. Karapetis, World J Gastroenterol 2015, 21, 11767-11776.
[8] S. Hellman, R. R. Weichselbaum, Journal of Clinical Oncology 1995, 13, 8-10.
[9] D. K. Reyes, K. J. Pienta, Oncotarget 2015, 6, 8491-8524.
[10] H. Kaneda, Y. Saito, Cancer Treatment Communications 2015, 3, 1-6.
[11] E. P. Misiakos, N. P. Karidis, G. Kouraklis, World J Gastroenterol 2011, 17, 4067-4075.
[12] L. R. Zarour, S. Anand, K. G. Billingsley, W. H. Bisson, A. Cercek, M. F. Clarke, L. M. Coussens, C. E. Gast, C. B. Geltzeiler, L. Hansen, K. A. Kelley, C. D. Lopez, S. R. Rana, R. Ruhl, V. L. Tsikitis, G. M. Vaccaro, M. H. Wong, S. C. Mayo, Cell Mol Gastroenterol Hepatol 2017, 3, 163-173.
[13] aD. H. Lee, J. M. Lee, B. Y. Hur, I. Joo, N.-J. Yi, K.-S. Suh, K. W. Kang, J. K. Han, Radiology 2016, 280, 782-792; bM. C. Niekel, S. Bipat, J. Stoker, Radiology 2010, 257, 674-684; cP. P. Mainenti, F. Romano, L. Pizzuti, S. Segreto, G. Storto, L. Mannelli, M. Imbriaco, L. Camera, S. Maurea, World J Radiol 2015, 7, 157-169.
[14] M. G. House, N. E. Kemeny, M. Gonen, Y. Fong, P. J. Allen, P. B. Paty, R. P. DeMatteo, L. H. Blumgart, W. R. Jarnagin, M. I. D'Angelica, Ann Surg 2011, 254, 851-856.
[15] R. B. Thandassery, U. Goenka, M. K. Goenka, J Clin Exp Hepatol 2014, 4, S104–S111.
[16] aR. U. Takahashi, H. Miyazaki, T. Ochiya, Front Genet 2014, 4, 295; bL.-A. MacFarlane, P. R. Murphy, Current Genomics 2010, 11, 537-561; cJ. O'Brien, H. Hayder, Y. Zayed, C. Peng, Front Endocrinol (Lausanne) 2018, 9, 402.
[17] Y. Huang, X. J. Shen, Q. Zou, S. P. Wang, S. M. Tang, G. Z. Zhang, J Physiol Biochem 2011, 67, 129-139.
[18] H. Lee, S. Han, C. S. Kwon, D. Lee, Protein Cell 2016, 7, 100-113.
[19] R. Kumarswamy, I. Volkmann, T. Thum, RNA Biol 2011, 8, 706-713.
[20] Y. Peng, C. M. Croce, Signal Transduct Target Ther 2016, 1, 15004.
[21] S. M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown, F. J. Slack, Cell 2005, 120, 635-647.
[22] K. Rajalingam, R. Schreck, U. R. Rapp, Š. Albert, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2007, 1773, 1177-1195.
[23] aA. Legras, N. Pecuchet, S. Imbeaud, K. Pallier, A. Didelot, H. Roussel, L. Gibault, E. Fabre, F. Le Pimpec-Barthes, P. Laurent-Puig, H. Blons, Cancers (Basel) 2017, 9; bA. Zaravinos, J Oncol 2015, 2015, 865816.
[24] M. H. Sohel, Achievements in the Life Sciences 2016, 10, 175-186.
[25] aH. Wang, R. Peng, J. Wang, Z. Qin, L. Xue, Clin Epigenetics 2018, 10, 59; bT. Kawaguchi, S. Komatsu, D. Ichikawa, M. Tsujiura, H. Takeshita, S. Hirajima, M. Miyamae, W. Okajima, T. Ohashi, T. Imamura, J. Kiuchi, H. Konishi, A. Shiozaki, K. Okamoto, E. Otsuji, Int J Mol Sci 2016, 17.
[26] X. Zhou, G. Ji, H. Chen, W. Jin, C. Yin, G. Zhang, Int J Clin Exp Med 2015, 8, 16890-16898.
[27] T. Kawaguchi, S. Komatsu, D. Ichikawa, R. Morimura, M. Tsujiura, H. Konishi, H. Takeshita, H. Nagata, T. Arita, S. Hirajima, A. Shiozaki, H. Ikoma, K. Okamoto, T. Ochiai, H. Taniguchi, E. Otsuji, Br J Cancer 2013, 108, 361-369.
[28] S. Huang, X. Tan, Z. Huang, Z. Chen, P. Lin, S. W. Fu, J Cancer 2018, 9, 3867-3873.
[29] V.-F. P, P. M, R. L, L. V, D. O, K. Z, S. M, K. I, S. O, Cancer Genomics Proteomics. 2016, 13, 311-316.
[30] K. Hur, Y. Toiyama, A. J. Schetter, Y. Okugawa, C. C. Harris, C. R. Boland, A. Goel, J Natl Cancer Inst 2015, 107.
[31] C. S.-C. Lam, L. Ng, A. K.-M. Chow, T. M.-H. Wan, S. Yau, N. S.-M. Cheng, S. K.-M. Wong, J. H.-W. Man, O. S.-H. Lo, D. C.-C. Foo, J. T.-C. Poon, R. W.-C. Pang, W.-L. Law, Oncotarget 2017, 8, 26858-26870.
[32] Y. Cheng, L. Dong, J. Zhang, Y. Zhao, Z. Li, Analyst 2018, 143, 1758-1774.
[33] A. Valoczi, C. Hornyik, N. Varga, J. Burgyan, S. Kauppinen, Z. Havelda, Nucleic Acids Res 2004, 32, e175.
[34] S. Streit, C. W. Michalski, M. Erkan, J. Kleeff, H. Friess, Nat Protoc 2009, 4, 37-43.
[35] C. G. Liu, G. A. Calin, S. Volinia, C. M. Croce, Nat Protoc 2008, 3, 563-578.
[36] E. Varkonyi-Gasic, R. Wu, M. Wood, E. F. Walton, R. P. Hellens, Plant Methods 2007, 3, 12.
[37] J. Choi, T. Majima, Chem Soc Rev 2011, 40, 5893-5909.
[38] P. Q. Ma, C. P. Liang, H. H. Zhang, B. C. Yin, B. C. Ye, Chem Sci 2018, 9, 3299-3304.
[39] M. Endo, H. Sugiyama, Molecules 2018, 23.
[40] L. M. Zanoli, G. Spoto, Biosensors (Basel) 2013, 3, 18-43.
[41] Y. Zhao, F. Chen, Q. Li, L. Wang, C. Fan, Chem Rev 2015, 115, 12491-12545.
[42] S. Fu, G. Qu, S. Guo, L. Ma, N. Zhang, S. Zhang, S. Gao, Z. Shen, Appl Biochem Biotechnol 2011, 163, 845-850.
[43] D. Evanko, Nature Methods 2004, 1, 186-187.
[44] B. Li, A. D. Ellington, X. Chen, Nucleic Acids Res 2011, 39, e110.
[45] K. Zhang, D. K. Kang, M. M. Ali, L. Liu, L. Labanieh, M. Lu, H. Riazifar, T. N. Nguyen, J. A. Zell, M. A. Digman, E. Gratton, J. Li, W. Zhao, Lab Chip 2015, 15, 4217-4226.
[46] M. M. Ali, F. Li, Z. Zhang, K. Zhang, D. K. Kang, J. A. Ankrum, X. C. Le, W. Zhao, Chem Soc Rev 2014, 43, 3324-3341.
[47] aI. Diez, R. H. Ras, Nanoscale 2011, 3, 1963-1970; bL. Zhang, E. Wang, Nano Today 2014, 9, 132-157.
[48] J. Liu, TrAC Trends in Analytical Chemistry 2014, 58, 99-111.
[49] aS. Y. New, S. T. Lee, X. D. Su, Nanoscale 2016, 8, 17729-17746; bZ. Yuan, Y. C. Chen, H. W. Li, H. T. Chang, Chem Commun (Camb) 2014, 50, 9800-9815.
[50] J. M. Obliosca, C. Liu, H. C. Yeh, Nanoscale 2013, 5, 8443-8461.
[51] Y. Hu, Q. Zhang, Z. Guo, S. Wang, C. Du, C. Zhai, Biosens Bioelectron 2017, 98, 91-99.
[52] S. Lu, S. Wang, J. Zhao, J. Sun, X. Yang, Anal Chem 2017, 89, 8429-8436.
[53] C. Y. Lee, K. S. Park, Y. K. Jung, H. G. Park, Biosens Bioelectron 2017, 93, 293-297.
[54] L. Hong, F. Zhou, G. Wang, X. Zhang, Biosens Bioelectron 2016, 86, 588-594.
[55] A. Chen, S. Ma, Y. Zhuo, Y. Chai, R. Yuan, Anal Chem 2016, 88, 3203-3210.
[56] C. Yang, K. Shi, B. Dou, Y. Xiang, Y. Chai, R. Yuan, ACS Appl Mater Interfaces 2015, 7, 1188-1193.
[57] L. Ge, X. Sun, Q. Hong, F. Li, ACS Appl Mater Interfaces 2017, 9, 32089-32096.
[58] R. R.Breaker, G. F.Joyce, Chemistry & Biology 1994, 1, 223-229.
[59] aH. Peng, A. M. Newbigging, Z. Wang, J. Tao, W. Deng, X. C. Le, H. Zhang, Anal Chem 2018, 90, 190-207; bJ. Kosman, B. Juskowiak, Anal Chim Acta 2011, 707, 7-17.
[60] K. Tram, P. Kanda, Y. Li, J Nucleic Acids 2012, 2012, 958683.
[61] W. Zhou, J. Ding, J. Liu, Theranostics 2017, 7, 1010-1025.
[62] M. Liu, D. Chang, Y. Li, Acc Chem Res 2017, 50, 2273-2283.
[63] H. Peng, X. F. Li, H. Zhang, X. C. Le, Nat Commun 2017, 8, 14378.
[64] aD. Schultz, E. G. Gwinn, Chem Commun (Camb) 2012, 48, 5748-5750; bD. Schultz, K. Gardner, S. S. Oemrawsingh, N. Markesevic, K. Olsson, M. Debord, D. Bouwmeester, E. Gwinn, Adv Mater 2013, 25, 2797-2803.
[65] aJ. M. Obliosca, M. C. Babin, C. Liu, Y. L. Liu, Y. A. Chen, R. A. Batson, M. Ganguly, J. T. Petty, H. C. Yeh, ACS Nano 2014, 8, 10150-10160; bH. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez, J. H. Werner, Nano Lett 2010, 10, 3106-3110.
[66] P. Shah, S. K. Cho, P. W. Thulstrup, Y. J. Bhang, J. C. Ahn, S. W. Choi, A. Rorvig-Lund, S. W. Yang, Nanotechnology 2014, 25, 045101.
[67] aT. Springer, H. Sıpova, H. Vaisocherova, J. Stepanek, J. Homola, Nucleic Acids Research 2010, 38, 7343-7351; bT. Springer, H. Sipova, H. Vaisocherova, J. Stepanek, J. Homola, Nucleic Acids Res 2010, 38, 7343-7351.
[68] B. Åkerman, Biophys J. 1998, 74, 3140-3151.
[69] aD. Mazumdar, N. Nagraj, H.-K. Kim, X. Meng, A. K. Brown, Q. Sun, W. Li, Y. Lu, J. Am. Chem. Soc. 2009, 131, 5506-5515; bH.-K. Kim, J. Liu, J. Li, N. Nagraj, M. Li, C. M.-B. Pavot, Y. Lu, J. AM. CHEM. SOC. 2007, 129, 6896-6902.
[70] aJ. Ciesiołka, D. Michałowski, J. Wrzesinski, J. Krajewski, W. J. Krzyżosiak, J. Mol. Biol 1998, 275, 211-220; bM. Lindell, P. Romby, E. G. H. Wagner, RNA 2002, 8, 534-541.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77171-
dc.description.abstract研究指出超過百分之五十的大腸直腸癌患者會有癌細胞轉移至肝臟的情形發生,轉移導致這些病患的存活機率小於未發生癌症轉移的病患,然而有肝轉移的病患若能提早接受手術切除肝腫瘤以及合併使用化學藥物進行輔助治療則可以顯著提升病患的存活率。因此,早期偵測並正確找出具有高轉移風險的病人將有效提升病人的痊癒機率,減少潛在的危險。
先前研究也證實小分子核醣核酸miR-885-5p可作為大腸直腸癌之肝轉移的生物標記。於此,我們開發了一個針對異常表現之miR-885-5p的偵測平臺,本平台中包含兩個系統,分別為由miR-885-5p誘導啟動之去氧核酶 (DNAzyme)與裝載於去氧核醣核酸奈米環 (DNA nanoring)的銀奈米團簇 (DNA-templated sliver nanoclusters, AgNCs),我們稱之為DNA nanoring@AgNCs。由miR-885-5p所活化之去氧核酶 (DNAzyme) 可以剪切溶液中的核醣核酸-去氧核醣核酸受質並產生兩條單股去氧核醣核酸,其中的一條我們稱之為convertor。Convertor可進一步以鏈置換反應 (Strand displacement)促使銀奈米團簇產生紅色螢光,以此做為訊號輸出。
在本研究中我們針對AgNCs的緩衝溶液條件、反應時間及溫度進行優化,使AgNCs螢光與鏈置換反應皆有最好之表現,同時成功合成DNA nanoring@AgNCs之奈米結構,並以穿透式電子顯微鏡加以驗證。而在DNAzyme的部分則以電泳的方式確定DNAzyme只在miRNA存在時得以活化並剪切受質產生convertor序列,最後確認兩系統可以合併使用,完成本偵測平臺。
本研究未來將著重於提升偵測平台之應用性以針對病患之血液檢體進行分析,同時探討利用DNA nanoring裝載AgNCs於生醫分析平臺上的更多應用性。
zh_TW
dc.description.abstractMore than fifty percent of patients with colorectal cancer (CRC) will undergo liver metastasis, which ultimately results in relative low survival rate compared with those who with primary cancer. Early detection, searching for effective prognostic indicators of treatment response and accurate identification of patients at high risk for recurrence are believed to be useful strategies to improve cancer outcomes. The circulating miRNA-885-5p was found to be a promising prognostic biomarker for detect hepatic metastasis from colorectal cancer. We herein developed a miRNA-sensing platform, integrating a miRNA-activated DNAzyme amplification system and DNA-templated silver nanoclusters (AgNCs) conjugated on a DNA nano-ring (DNA nanoring@AgNCs) for sensitive detection of miRNA-885-5p.
The DNAzyme first hybridized with the locker strand and remained inactivated until the presence of our target miRNA. The target miRNA removed the locker strand from the DNAzyme via strand displacement to re-activate DNAzyme. The DNAzyme possess the catalytic ability to cleave specific DNA-RNA substrates introduced in the reaction mixture, and subsequently produced two short single strands DNA, which served as signal convertor for our sensing platform. The convertor DNA triggered the transformation of green-emissive AgNCs to red-emissive AgNCs, which can be fabricated in situ by the hybridization of a specially designed DNA template with a DNA nanoring.
We have obtained the optimized reaction conditions for DNA-templated AgNCs, including working buffer condition, reaction time and temperature, to reach high luminescence with AgNCs, and enhanced strand displacement performance. We also hybridized the DNA-templated AgNCs with partially complementary nanoring to form the “DNA nanoring@AgNCs” and it was subjected to observation under High Resolution Transmission Electron Microscope (HRTEM). In addition, we confirmed that the DNAzyme cleavage of the substrate only occurred when target miRNA presented in the sample solution. Last but not least, we successfully combined two systems (AgNCs reporting probe system and miR-885 activated DNAzyme amplification system) into a functioning miRNA-sensing platform for monitoring hepatic metastasis from colorectal cancer prognosis.
Further study will investigate not only the applicability of our sensing platform in analyzing real blood samples collected from cancer patients, but also the feasibility of DNA nanoring as a potential signal amplifier in sensing platform.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:49:19Z (GMT). No. of bitstreams: 1
ntu-108-R06b22013-1.pdf: 7741264 bytes, checksum: 95308abb983ab1165ec0b234e23f958b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第一章 緒論 1
第二章 文獻回顧 2
2.1大腸直腸癌之肝轉移 (Hepatic metastasis from colorectal cancer) 2
2.1.1大腸直腸癌現狀 2
2.1.2大腸直腸癌之成因與症狀 2
2.1.3大腸直腸癌之進程與肝轉移 (Hepatic metastasis from colorectal cancer) 3
2.1.4大腸直腸癌之肝轉移的診斷與治療 4
2.2 微型核醣核酸 (MicroRNA, miRNA) 7
2.2.1 miRNA的生成與生理功能 7
2.2.2 miRNA與癌症之關聯 8
2.2.3 循環性miRNA (Circulating miRNA) 9
2.2.4 miRNA-885-5作為大腸直腸癌的肝轉移之biomarker 9
2.2.5 miRNA偵測方法 10
2.3 DNA 生化感測器 (DNA-based biosensor) 13
2.4等溫核酸放大技術 (Isothermal amplification) 13
2.4.1 雜交連鎖反應 (Hybridization chain reaction, HCR) 14
2.4.2 Catalyzed hairpin assembly (CHA) 15
2.4.3 指數擴增反應 (Exponential amplification reaction, EXPAR) 16
2.4.4 滾環式擴增法 (Rolling circle amplification, RCA) 17
2.5 以DNA為模板之銀奈米團簇 (DNA-templated silver nanoclusters)的合成與其在生醫感測器之應用 18
2.6 DNAzyme之功能與其在生醫感測器之應用 21
第三章 實驗設計 23
3.1 大腸直腸癌之肝轉移分析平台之建立與設計 23
第四章 實驗材料與方法 27
4.1 實驗儀器 27
4.2 實驗材料 28
4.2.1 核酸序列 28
4.2.2 實驗試劑與材料 29
4.2.3 緩衝溶液 (Buffer) 30
4.3 建構裝載銀奈米團簇之去氧核醣核酸奈米環 (DNA nanoring@AgNCs) 31
4.3.1 AgNCs之合成 31
4.3.2 純化AgNCs與定性分析 31
4.3.3 量測AgNCs之吸收光譜與螢光光譜 31
4.3.4 鏈置換反應 (Strand displacement)所誘發之紅色螢光生成 32
4.3.5 聚丙烯醯胺膠體電泳 (Polyacrylamide gel electrophoresis, PAGE) 32
4.3.6 Strand displacement之膠體電泳鑑定 33
4.3.7 AgNCs所用之緩衝溶液濃度的最佳化 34
4.3.8 Strand displacement所需時間與溫度的最佳化 35
4.3.9 AgNCs之螢光穩定性測試 35
4.3.10 AgNCs使用濃度測試 36
4.3.11 建立convertor所產生的紅色螢光訊號對不同濃度之convertor之關係圖 36
4.3.12 AgNCs之熱穩定測試 36
4.3.13 合成DNA nanoring 37
4.3.14 純化DNA nanoring 38
4.3.15 瓊脂膠體電泳 (Agarose gel electrophoresis) 38
4.3.16 一個DNA nanoring裝載不同數目之AgNCs template之鑑定 38
4.3.17 合成AgNCs @ DNA nanoring 39
4.3.18 AgNCs @ DNA nanoring之TEM影像 39
4.3.19 DNA nanoring@AgNCs之螢光強度鑑定 39
4.4 MiRNA偵測與DNAzyme放大系統 40
4.4.1 DNAzyme substrate穩定性測試 40
4.4.2 DNAzyme反應溶液中輔因子種類與濃度之最佳化 40
4.4.3鉛離子造成銀奈米團簇之螢光減弱測試 41
4.4.4螯合劑去除鉛離子之測試 41
4.4.5 Locker控制DNAzyme活性測試 41
4.4.6 miRNA活化DNAzyme測試 41
4.5 雙系統合併 42
4.5.1 合併兩系統之體積與比例最佳化 42
4.5.2 AgNCs on ring對convertor之檢量線 42
第五章 實驗結果與討論 43
5.1 DNA奈米環裝載銀奈米團簇(DNA nanoring@AgNCs)的合成與組裝 43
5.1.1 銀奈米團簇(AgNCs)之吸收光譜與螢光光譜 43
5.1.2 純化AgNCs與定性分析 45
5.1.3 Convertor所誘發之紅色螢光生成 48
5.1.4 鏈置換反應之膠體電泳鑑定 50
5.1.5 AgNCs合成與strand displacement所用之緩衝溶液種類與濃度的最佳化 52
5.1.6 緩衝溶液中Mg2+濃度對AgNCs螢光強度之影響 58
5.1.7 Strand displacement所需時間與溫度的最佳化 61
5.1.8 AgNCs之螢光穩定性測試 63
5.1.9 AgNCs使用濃度測試 65
5.1.10 建立convertor所產生的紅色螢光訊號對不同濃度之convertor之關係圖 67
5.1.11 AgNCs之熱穩定測試 69
5.1.12 DNA nanoring之合成與鑑定 72
5.1.13兩種合成DNA naonring方式之比較 74
5.1.14 DNA nanoring之純化與檢驗 76
5.1.15 一個DNA nanoring裝載不同數目之AgNCs template之鑑定 78
5.1.16 合成有AgNCs之DNA nanoring之鑑定 80
5.1.17 AgNCs @ DNA nanoring之螢光強度鑑定 82
5.2 MiRNA偵測與DNAzyme放大系統 84
5.2.1 DNAzyme substrate穩定性測試 84
5.2.2 DNAzyme 輔因子之選擇與濃度之最佳化 88
5.2.3鉛離子造成銀奈米團簇之螢光減弱測試 92
5.2.4螯合劑去除鉛離子之測試 93
5.2.5 Locker控制DNAzyme活性測試 95
5.2.6 MiRNA活化DNAzyme測試 98
5.2.7 Locker控制與miRNA活化調整後的DNAzyme測試 100
5.3 雙系統合併 103
5.3.1 合併兩系統之體積與比例最佳化 103
5.3.2 DNA nanoring@AgNCs對convertor之檢量線 107
第六章 結論 108
參考文獻 109
-
dc.language.isozh_TW-
dc.title開發銀奈米團簇之生醫感測器偵測大腸直腸癌之肝轉移zh_TW
dc.titleA Silver Nanocluster-based Biosensor for Hepatic Metastasis from Colorectal Canceren
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊顯;李弘文;吳立真;周芳如zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword大腸癌之肝轉移,小分子核醣核酸,去氧核?,銀奈米團簇,去氧核醣核酸奈米環,zh_TW
dc.subject.keywordhepatic metastasis from colorectal cancer,miRNA,DNAzyme,silver nanocluster,DNA nanoring,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU201903627-
dc.rights.note未授權-
dc.date.accepted2019-08-20-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
7.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved