Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維(Nan-Wei Su)
dc.contributor.authorChing-Chun Hsiehen
dc.contributor.author謝淨淳zh_TW
dc.date.accessioned2021-07-10T21:49:17Z-
dc.date.available2021-07-10T21:49:17Z-
dc.date.copyright2020-01-21
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citation方廷方 (2014) 利用Caco-2細胞體外試驗評估Genistein磷酸酯衍生物之吸收。國立台灣大學農業化學系碩士論文。
許宸 (2015) 枯草桿菌BCRC 80517對大豆異黃酮生物轉換之研究。國立台灣大學農業化學系碩士論文。
張又權 (2017) 苯並吡喃酮類化合物磷酸化酵素基質特異性之研究。國立台灣大學農業化學系碩士論文。
Akal, Z.Ü., L. Alpsoy and A. Baykal. 2016. Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceramics International 42: 9065-9072.
Alarcón, J., J. Alderete, C. Escobar, R. Araya and C.L. Cespedes. 2013. Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatalysis and Biotransformation 31: 160-167.
Almeida, A.F., G.I.A. Borge, M. Piskula, A. Tudose, L. Tudoreanu, K. Valentová, et al. 2018. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Comprehensive Reviews in Food Science and Food Safety 17: 714-731.
Barney, B.M., M.R. Schaab, R. LoBrutto and W.A. Francisco. 2004. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis. Protein Expression and Purification 35: 131-141.
Boersma, M.G., H. van der Woude, J. Bogaards, S. Boeren, J. Vervoort, N.H.P. Cnubben, et al. 2002. Regioselectivity of Phase II Metabolism of Luteolin and Quercetin by UDP-Glucuronosyl Transferases. Chemical Research in Toxicology 15: 662-670.
Booth, A.N., C.W. Murray, F.T. Jones and F. Deeds. 1956. The metabolic fate of rutin and quercetin in the animal body. The Journal of Biological Chemistry 223: 251-257.
Camerini-Otero, R.D. and P. Hsieh. 1995. Homologous Recombination Proteins in Prokaryotes and Eukaryotes. Annual Review of Genetics 29: 509-552.
Cao, H., X. Chen, A.R. Jassbi and J. Xiao. 2015. Microbial biotransformation of bioactive flavonoids. Biotechnology Advances 33: 214-223.
Chen, A.Y. and Y.C. Chen. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry 138: 2099-2107.
Cho, K.M., J.H. Lee, H.D. Yun, B.Y. Ahn, H. Kim and W.T. Seo. 2011. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis 24: 402-410.
Erlejman, A.G., S.V. Verstraeten, C.G. Fraga and P.I. Oteiza. 2004. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radical Research 38: 1311-1320.
Erlund, I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research 24: 851-874.
Filomeni, G., E. Desideri, S. Cardaci, I. Graziani, S. Piccirillo, G. Rotilio, et al. 2010. Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy 6: 202-216.
Gibson, D.G., H.O. Smith, C.A. Hutchison, J.C. Venter and C. Merryman. 2010. Chemical synthesis of the mouse mitochondrial genome. Nature Methods 7: 901-903.
Gibson, D.G., L. Young, R.Y. Chuang, J.C. Venter, C.A. Hutchison, 3rd and H.O. Smith. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343-345.
Gopal, B., L.L. Madan, S.F. Betz and A.A. Kossiakoff. 2005. The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s). Biochemistry 44: 193-201.
Heidorn, T., D. Camsund, H.-H. Huang, P. Lindberg and P. Lindblad. 2011. Integrative Plasmid. Methods in Enzymology 497: 539-579.
Hirooka, K., S. Kunikane, H. Matsuoka, K. Yoshida, K. Kumamoto, S. Tojo, et al. 2007. Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. Journal of Bacteriology 189: 5170-5182.
Hirookay, K. and Y. Fujita. 2010. Excess production of Bacillus subtilis quercetin 2,3-dioxygenase affects cell viability in the presence of quercetin. Bioscience, Biotechnology, and Biochemistry 74: 1030-1038.
Hong, J.-T., J.-H. Yen, L. Wang, Y.-H. Lo, Z.-T. Chen and M.-J. Wu. 2009. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicology and Applied Pharmacology 237: 59-68.
Hsu, C., H.-W. Ho, C.-F. Chang, S.-T. Wang, T.-F. Fang, M.-H. Lee, et al. 2013. Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International 53: 487-495.
Hu, Y., C. Ge, W. Yuan, R. Zhu, W. Zhang, L. Du, et al. 2010. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture 90: 1194-1202.
Ibrahim, A.-R.S. 2005. Biotransformation of Chrysin and Apigenin by Cunninghamella elegans. Chemical and Pharmaceutical Bulletin. 53: 671—673.
Jones, S. 2008. Phosphorylation. Biotechnology Set. Wiley-VCH Verlag GmbH. p. 221-241.
Khan, N., D.N. Syed, N. Ahmad and H. Mukhtar. 2013. Fisetin: a dietary antioxidant for health promotion. Antioxidants & Redox Signaling 19: 151-162.
Kostrzewa-Susłow, E., J. Dmochowska-Gładysz, A. Białońska, Z. Ciunik and W. Rymowicz. 2006. Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. Journal of Molecular Catalysis B: Enzymatic 39: 18-23.
Kostrzewa-Susłowa, E., J. Dmochowska-Gładysza, T. Janeczkoa, K. Środab, K. Michalakb and A. Palko. 2012. Microbial Transformations of 6- and 7-Methoxyflavones in Aspergillus niger and Penicillium chermesinum Cultures. Zeitschrift für Naturforschung 67: 411 – 417.
Krishnamurty, H.G. and F.J. Simpson. 1970. Degradation of Rutin by Aspergihs flavus The Journal of Biological Chemistry 245: 1467-1471.
Kumar, K.M. and B. Anil. 2012. Biopharmaceutics Drug Disposition Classification System: An Extension of Biopharmaceutics Classification System. International Research Journal of Pharmacy 3: 5-10.
Kuo, A., S. Cappelluti, M. Cervantes-Cervantes, M. Rodriguez and D.S. Bush. 1996. Okadaic Acid, a Protein Phosphatase Inhibitor, Blocks Calcium Changes, Gene Expression, and Cell Death lnduced by Gibberellin in Wheat Aleurone Cells. The Plant Cell 8: 259-269.
Kuo, L.C., R.Y. Wu and K.T. Lee. 2012. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Applied Microbiology and Biotechnology 94: 1181-1188.
Luo, H., G.O. Rankin, Z. Li, L. DePriest and Y.C. Chen. 2011. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chemistry 128: 513-519.
Maher, P., T. Akaishi and K. Abe. 2006. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences 103: 16568-16573.
Malesev, D. and V. Kuntic. 2007. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society 72: 921-939.
Moona, Y.J., L. Wanga, R. DiCenzob and M.E. Morris. 2008. Quercetin pharmacokinetics in humans. Biopharmaceutics & Drug Disposition 29: 205-217.
Murota, K. and J. Terao. 2003. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Archives of Biochemistry and Biophysics 417: 12-17.
Narmandakh, A., N. Gad'on, F. Drepper, B. Knapp, W. Haehnel and G. Fuchs. 2006. Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. Journal of bacteriology 188: 7815-7822.
Oka, T. and F.J. Simpsom. 1971. Quercetinase, a Dioxygenase Containing Copper. Biochemical and Biophysical Research Communication 43: 1-5.
Omori, T., K. Shiozawa, M. Sekiya and Y. Minoda. 1986. Formation of 2,4,6-Trihydroxy-carboxylic Acid and 2-Proto-catechuoylphloroglucinol-carboxylic Acid from Rutin by Bacteria. Agricultural and Biological Chemistry 50: 779-780.
Rautio, J., H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, et al. 2008. Prodrugs: design and clinical applications. Nature Reviews Drug Discovery 7: 255-270.
Rodriguez-Mateos, A., D. Vauzour, C.G. Krueger, D. Shanmuganayagam, J. Reed, L. Calani, et al. 2014. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology 88: 1803.
Romano, B., E. Pagano, V. Montanaro, A.L. Fortunato, N. Milic and F. Borrelli. 2013. Novel Insights into the Pharmacology of Flavonoids. Phytotherapy Research 27: 1588-1596.
Ross, J.A. and C.M. Kasum. 2002. Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition 22: 19–34.
Sakanashi, Y., K. Oyama, H. Matsui, T.B. Oyama, T.M. Oyama, Y. Nishimura, et al. 2008. Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: A model experiment. Life Sciences 83: 164-169.
Schmeling, S., A. Narmandakh, O. Schmitt, N. Gad’on, K.S. ̈hle and G. Fuchs. 2004. Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. Journal Bacteriology 186: 8044-8057.
Sesso, H.D., S. Liu, J.M. Gaziano and J.E. Buring. 2003. Dietary Lycopene, Tomato-Based Food Products and Cardiovascular Disease in Women. The Journal of Biological Chemistry 133: 2336-2341.
Simpson, F.J., G. Talbot, D.W.S. Westlake and 1960. Production of carbon monoxide in the enzymatic degradation of rutin. Biochemical and Biophysical Research Communications 2: 15-18.
Sugihara, N., T. Arakawa, M. Ohnishi and K. Furuno. 1999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radical Biology & Medicine 27: 1313-1323.
Terao, J., K. Murota and Y. Kawai. 2011. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food & Function 2: 11-17.
Thilakarathna, S.H. and H.P. Rupasinghe. 2013. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5: 3367-3387.
Tranchimand, S., G. Ertel, V. Gaydou, C. Gaudin, T. Tron and G. Iacazio. 2008. Biochemical and molecular characterization of a quercetinase from Penicillium olsonii. Biochimie 90: 781-789.
Waldmann, S., M. Almukainzi, N.A. Bou-Chacra, G.L. Amidon, B.J. Lee, J. Feng, et al. 2012. Provisional biopharmaceutical classification of some common herbs used in Western medicine. Molecular Pharmaceutics 9: 815-822.
Wang, S.-T., T.-F. Fang, C. Hsu, C.-H. Chen, C.-J. Lin and N.-W. Su. 2015. Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. Journal of Functional Foods 13: 323-335.
Wei, Q.-K., T.-R. Chen and J.-T. Chen. 2008. Use of Bacillus subtilis to enrich isoflavone aglycones in fermented natto. Journal of the Science of Food and Agriculture 88: 1007-1011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77170-
dc.description.abstract類黃酮化合物為自然界中普遍存在的多酚類植物二物代謝物,許多研究指出類黃酮具有良好的生理活性,在動物、人體試驗部分功效都已獲得證實,然而多數類黃酮水溶性低的特性,是造成生物可利用率(bioavailability)極低的原因之一,因而限制了諸多應用的可能性,目前許多研究致力於改善低溶解度的缺點以提高其生物可利用性。本實驗室先前篩選出的Bacillus subtilis BCRC 80517可將大豆異黃酮的daidzein和genistein進行磷酸化,轉為daidzein-7-O-phosphate (D7P)和genistein-7-O-phosphate (G7P),讓水溶性大幅的提升,生物可利用率也顯著的增加,前人已自B. subtilis純化出該磷酸酯合成酶,完成蛋白質及基因定序,並建立基因載體轉殖到大腸桿菌大量表現,針對此酵素的基質特異性進行分析與酵素動力學的研究。本論文建立於磷酸酯合成酶 (FPS)可轉換的黃酮醇類,進行後續之研究。
本研究先利用磷酸酯合成酶轉換黃酮醇類的fisetin,再挑選三種不同黃酮醇進行微生物轉換,並與磷酸化酵素轉換之產物做比較,結果顯示fisetin可被B. subtilis 轉換成磷酸酯衍生物,而quercetin和kaempferol的衍生物並非磷酸酯產物,因此以LC-MS/MS和NMR對quercetin衍生物進行結構鑑定。發現此衍生物為protocatechuoyl-phloroglucinolcarboxylic acid (PCPGCA)的相關產物,文獻查閱知道進行此反應的是quercetinase,比較三種黃酮醇類轉化結果,5號位置的hydroxyl group是影響黃酮醇類轉為PCPGCA產物的重要位點。另一方面,麴酸是quercetinase的抑制劑,然而添加麴酸進行共培養時,雖然增加了磷酸化產物,卻無法完全抑制開環途徑,因此透過同源重組突變開環基因qdoI為根本解決辦法。定序實驗室B. subtilis 菌株的qdoI,並做抗生素抗性測試挑選抗性基因,組裝質體各片段,以E. coli DH5α為質體複製宿主,成功組裝質體pUC-qdoNeo。
zh_TW
dc.description.abstractFlavonoids are polyphenolic secondary metabolites that are ubiquitous in plants and their processed products. According to many research results, flavonoids possess numerous health benefits. Some of effects have been proved in animals or humans. Nevertheless, flavonoids have low aqueous prosperity and poor bioavailability. These disadvantages substantially limit their possibility of application. Our previous study screened Bacillus subtilis BCRC 80517, which could phosphorylate some types of isoflavone, daidzein and genistein, and biotransform them into daidzein 7-O-phosphate (D7P) and genistein 7-O-phosphate (G7P). Besides, these phosphate conjugates bioabailability are greatly improved. In addition, we have purified the enzyme, identified its protein、DNA sequence and utilized recombinant E. coli to perform the flavonoids phosphate synthetase (FPS) by a constructed plasmid. We discovered that this FPS not only can transform isoflavone, but also can phosphorylate other types of flavonoids, like flavonols. Therefore, the objective of this research is utilizing B. subtilis to transform flavonols and identify what the pathway Bacillus subtilis will go when they come from flavonols.
In this thesis, transforming fisetin, one type of flavonols would be done first. Next, I chose three types of flavonol, fisetin, kaempferol, quercetin to be biotransformed by B. subtilis. The product was isolated, purified and identified by LC-MS/MS and NMR. The results showed that quercetin and kaempferol were not biotransformed into phosphate conjugates. Depending on the results, we know that the hydroxyl group on the 5th position carbon is the critical point for flavonols to be phosphorylated or not. According to the metabolites, the double bond between the 2nd and 3rd carbon of quercetin and kaempferol were cleavaged and became protocatechuoyl-phloroglucinolcarboxylic acid. Although little of quercetin-O-phosphate were produced, there was no obvious effect by adding quercetinase inhibitor, kojic acid. Therefore, constructing a plasmid and mutating the qdoI gene by homologous recombination will be the fundamental method if we want to get flavonol-O-phosphate products. Hence, sequencing B. subtilis BCRC 80517 qdoI sequence and choosing what antibiotic to select successfully mutated colony should be done. The method chosen to assembly plasmid inserts and vector was Gibson Assembly. At last, the plasmid was transformed in E. coli DH5α and I successfully got assembling plasmid.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:49:17Z (GMT). No. of bitstreams: 1
ntu-108-R06623011-1.pdf: 5658093 bytes, checksum: a880c7e072772a0930525fe89eccf760 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
縮寫對照表 VI
目錄 VIII
圖目錄 XII
表目錄 XIV
第一章 前言 1
第二章 文獻回顧 2
第一節 類黃酮 2
1. 類黃酮簡介 2
2. 類黃酮之生理活性 2
3. 類黃酮之生物可利用率 4
3-1. BCS分類系統 4
3-2. 黃酮醇於人體之代謝與吸收 5
3-3. 槲皮素於人體之口服生物可利用率 6
第二節 類黃酮之微生物轉換 13
第三節 磷酸化酵素 14
1. 磷酸化酵素簡介 14
2. 磷酸苯酯合成酶 (phenylphosphate synthase, PPS) 15
第四節 槲皮素雙氧化酶 18
第五節 同源重組基因剔除法 21
1. 同源重組 21
2. 傳統建構質體法 21
3. 無縫式建構質體法 22
第三章 材料與方法 25
第一節 實驗架構 25
第二節 實驗材料 26
1. 菌株 26
1-1 微生物轉換菌株 26
1-2 磷酸化酵素表現菌株 26
1-3 建構質體保存菌株 26
2. 培養基 27
2-1 Bacillus subtilis BCRC 80517之培養基 27
2-2 Escherichia coli BPE∷pET47b(+)/BL21(DE3)之培養基 27
2-3 Escherichia coli DH5α∷pUC-qdoNeo之培養基 28
3. 緩衝液 29
3-1 Enzyme buffer 29
3-2 Cell lysis buffer 29
4. 試藥與溶劑 29
5. 儀器設備 31
第三節 實驗方法 33
1. FPS酵素轉換黃酮醇類 33
1-1菌株活化與種菌培養 33
1-2 以IPTG誘導重組蛋白基因大量表現 33
1-3 BPE粗酵素液之製備 33
1-4 蛋白質電泳分析SDS-PAGE 33
1-5 蛋白質定量方法 34
1-6 Fisetin酵素轉換 34
1-7 分析級高效液相層析儀分析條件 34
2. B. subtilis BCRC 80517轉換黃酮醇類化合物 35
2-1 種菌之培養 35
2-2 微生物轉換黃酮醇類 35
2-3 分析級高效液相層析儀分析條件 35
3. 結構鑑定quercetin微生物衍生物 36
3-1 放大生產quercetin衍生物 36
3-2 分離純化quercetin微生物主要代謝產物 36
3-3 以半製備級高效液相層析儀純化類黃酮磷酸酯衍生物 36
3-4 半製備級高效液相層析儀分離類黃酮磷酸酯衍生物之條件 36
3-5 高效液相層析串聯式質譜儀分析類黃酮衍生物之條件 37
3-6 核磁共振光譜分析類黃酮衍生物之條件 37
4. Quercetinase活性抑制劑添加 37
4-1 種菌之培養 37
4-2 活性抑制劑添加進行微生物轉換quercetin 37
5. 建構同源重組質體pUC-qdoNeo 38
5-1 BLAST (Basic Local Alignment Search Tool) 38
5-2 基因多重序列比對 (Multiple Sequences Alignment) 38
5-3 B. subtilis BCRC 80517 基因體DNA抽取 38
5-4 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 38
5-5 B. subtilis BCRC 80517對不同抗生素抗性測試 39
5-6 建立進行同源重組突變之質體pUC19-qdoNeo 40
5-7 選殖菌株之轉型作用 (Transformation) 41
5-8 篩選pUC-qdoNeo組合成功之質體 42
第四章 結果與討論 43
第一節 BsFPS蛋白質對黃酮醇類化合物之轉換 43
1. FPS之分離 43
2. FPS對漆黃素(fisetin)轉換 44
第二節 微生物B. subtilis BCRC 80517轉換黃酮醇類化合物 46
1.微生物轉換黃酮醇類化合物 46
1-1 Quercetin 46
1-2 Kaempferol 46
1-3 Fisetin 47
2.結構鑑定微生物轉換quercetin之衍生物 52
2-1放大體積進行微生物轉換Quercetin 52
2-2半製備級高效液相層析儀分離2-PCPGCA 52
2-3 2-PCPGCA質譜與NMR結構鑑定結果 52
3. Quercetinase對黃酮醇類微生物轉換之影響 56
3-1 Quercetinase與FPS對黃酮醇類轉換之比較 56
3.2 抑制劑麴酸的添加對產物之影響 56
第三節 建構同源重組進行突變之載體 60
1. B. subtilis BCRC 80517 qdoI 定序 60
2. B. subtilis BCRC 80517抗生素抗性測試 60
3. 建構同源重組質體之載體 60
4 篩選成功組合之質體 61
第五章 結論 68
第六章 參考文獻 69
第七章 附錄 74
dc.language.isozh-TW
dc.title枯草桿菌BCRC 80517 qdoI基因對黃酮醇化合物微生物轉換之影響zh_TW
dc.titleThe effect of qdoI on the biotransformation of flavonols by Bacillus subtilis BCRC 80517en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄(Min-Hsiung Lee),陳錦樹(Chin-Shuh Chen),胡紹揚(Shao-Yang Hu),劉繼賢(Chi-Hsien Liu)
dc.subject.keyword黃酮醇,磷酸化,槲皮素雙氧化?,同源重組,zh_TW
dc.subject.keywordflavonols,phosphorylation,quercetinase,homologous recombination,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201903772
dc.rights.note未授權
dc.date.accepted2019-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06623011-1.pdf
  目前未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved