Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77169Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 康敦彥 | zh_TW |
| dc.contributor.advisor | Dun-Yen Kang | en |
| dc.contributor.author | 楊子慧 | zh_TW |
| dc.contributor.author | Zhi-Huei Yang | en |
| dc.date.accessioned | 2021-07-10T21:49:15Z | - |
| dc.date.available | 2024-12-31 | - |
| dc.date.copyright | 2020-01-09 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS nano 2009, 3 (7), 1767-1774.
2. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4 (5), 2955-2963. 3. Naito, K.; Yoshinaga, N.; Tsutsumi, E.; Akasaka, Y., Transparent conducting film composed of graphene and silver nanowire stacked layers. Synthetic Metals 2013, 175, 42-46. 4. Liu, B.-T.; Hsu, C.-H., Anti-scratch and transparency properties of transparent conductive carbon nanotube films improved by incorporating polyethoxysiloxane. 2011; Vol. 359, p 423-7. 5. 李裕安. 鍍覆金屬奈米顆粒之奈米碳材料作為透明導電膜之導電材料其光電與電熱特性之研究. 清華大學, 2014. 6. Liu, C.-H.; Yu, X., Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Research Letters 2011, 6 (1), 75. 7. Araki, T.; Jiu, J.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K., Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Research 2014, 7 (2), 236-245. 8. Yang, A.-C.; Li, Y.-S.; Lam, C. H.; Chi, H.-Y.; Cheng, I.-C.; Kang, D.-Y., Solution-processed ultra-low-k thin films comprising single-walled aluminosilicate nanotubes. Nanoscale 2016, 8 (40), 17427-17432. 9. Yucelen, G. I. Formation and growth mechanisms of single-walled metal oxide nanotubes. Georgia Institute of Technology, 2012. 10. Bahadori, E.; Vaiano, V.; Esposito, S.; Armandi, M.; Sannino, D.; Bonelli, B., Photo-activated degradation of tartrazine by H2O2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catalysis Today 2018, 304, 199-207. 11. Shafia, E.; Esposito, S.; Armandi, M.; Bahadori, E.; Garrone, E.; Bonelli, B., Reactivity of bare and Fe-doped alumino-silicate nanotubes (imogolite) with H2O2 and the azo-dye Acid Orange 7. Catalysis Today 2016, 277, 89-96. 12. Shafia, E.; Esposito, S.; Manzoli, M.; Chiesa, M.; Tiberto, P.; Barrera, G.; Menard, G.; Allia, P.; Freyria, F. S.; Garrone, E.; Bonelli, B., Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). Journal of Nanoparticle Research 2015, 17 (8), 336. 13. Liou, K.-H.; Kang, D.-Y.; Lin, L.-C., Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination. ChemPhysChem 2017, 18 (2), 179-183. 14. Pan, Y.-H.; Zhao, Q.-Y.; Gu, L.; Wu, Q.-Y., Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination. Desalination 2017, 421, 160-168. 15. Menamparambath, M. M.; Ajmal, C. M.; Kim, K. H.; Yang, D.; Roh, J.; Park, H. C.; Kwak, C.; Choi, J. Y.; Baik, S., Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films. Sci Rep 2015, 5, 9. 16. Yucelen, G. I.; Connell, R. E.; Terbush, J. R.; Westenberg, D. J.; Dogan, F., Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties. Applied Nanoscience 2016, 6 (4), 607-614. 17. Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D.; De Mello, J. C., Efficient organic solar cells with solution‐processed silver nanowire electrodes. Advanced Materials 2011, 23 (38), 4371-4375. 18. Wu, H.; Hu, L.; Rowell, M. W.; Kong, D.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y.; McGehee, M. D.; Cui, Y., Electrospun metal nanofiber webs as high-performance transparent electrode. Nano letters 2010, 10 (10), 4242-4248. 19. Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H.-J.; Dennler, G.; Sariciftci, N. S.; Hu, L.; Gruner, G., Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters 2006, 88 (23), 233506. 20. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574. 21. Mohl, M.; Dombovari, A.; Vajtai, R.; Ajayan, P. M.; Kordas, K., Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers. Sci Rep 2015, 5, 13710. 22. Hu, L.; Hecht, D. S.; Gruner, G., Carbon nanotube thin films: fabrication, properties, and applications. Chemical reviews 2010, 110 (10), 5790-5844. 23. Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P., Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Letters 2008, 8 (2), 689-692. 24. 劉博滔; 郭翰霖, 石墨烯複合透明導電膜之研究. 技術學刊 2014, 29 (3), 173-179. 25. Cairns, D. R.; II, R. P. W.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R., Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters 2000, 76 (11), 1425-1427. 26. Park, Y.-S.; Choi, K.-H.; Kim, H.-K., Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics. Journal of Physics D: Applied Physics 2009, 42 (23), 235109. 27. Zhang, K.; Zhu, F.; Huan, C. H. A.; Wee, A. T. S., Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 2000, 376 (1), 255-263. 28. De, S.; Coleman, J. N., Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 2010, 4 (5), 2713-2720. 29. Ahn, J.-H.; Hong, B. H., Graphene for displays that bend. Nature nanotechnology 2014, 9 (10), 737. 30. Tien, H.-W.; Huang, Y.-L.; Yang, S.-Y.; Wang, J.-Y.; Ma, C.-C. M., The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 2011, 49 (5), 1550-1560. 31. Fukaya, N.; Kim, D. Y.; Kishimoto, S.; Noda, S.; Ohno, Y., One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS Nano 2014, 8 (4), 3285-3293. 32. Sierros, K. A.; Hecht, D. S.; Banerjee, D. A.; Morris, N. J.; Hu, L.; Irvin, G. C.; Lee, R. S.; Cairns, D. R., Durable transparent carbon nanotube films for flexible device components. Thin Solid Films 2010, 518 (23), 6977-6983. 33. Li, P.; Sun, K.; Ouyang, J., Stretchable and Conductive Polymer Films Prepared by Solution Blending. ACS Applied Materials & Interfaces 2015, 7 (33), 18415-18423. 34. Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K., Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 2015, 6, 7. 35. Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P., Smooth Nanowire/Polymer Composite Transparent Electrodes. Advanced Materials 2011, 23 (26), 2905-2910. 36. Walker, S. B.; Lewis, J. A., Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures. Journal of the American Chemical Society 2012, 134 (3), 1419-1421. 37. Suh, Y. D.; Hong, S.; Lee, J.; Lee, H.; Jung, S.; Kwon, J.; Moon, H.; Won, P.; Shin, J.; Yeo, J.; Ko, S. H., Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor. RSC Advances 2016, 6 (62), 57434-57440. 38. Li, J.; Liang, J.; Jian, X.; Hu, W.; Li, J.; Pei, Q., A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat-resistant Polymer Composite. Macromolecular Materials and Engineering 2014, 299 (11), 1403-1409. 39. Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W., Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes. ACS Applied Materials & Interfaces 2011, 3 (10), 4075-4084. 40. Paineau, E., Imogolite nanotubes: a flexible nanoplatform with multipurpose applications. Applied Sciences 2018, 8 (10), 1921. 41. Wang, M.; Ioccozia, J.; Sun, L.; Lin, C.; Lin, Z., Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science 2014, 7 (7), 2182-2202. 42. Lee, K.; Mazare, A.; Schmuki, P., One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical reviews 2014, 114 (19), 9385-9454. 43. Kang, D. Y.; Lydon, M. E.; Yucelen, G. I.; Jones, C. W.; Nair, S., Solution‐Processed Ultrathin Aluminosilicate Nanotube–Poly (vinyl alcohol) Composite Membranes with Partial Alignment of Nanotubes. ChemNanoMat 2015, 1 (2), 102-108. 44. Yucelen, G. I.; Kang, D.-Y.; Guerrero-Ferreira, R. C.; Wright, E. R.; Beckham, H. W.; Nair, S., Shaping single-walled metal oxide nanotubes from precursors of controlled curvature. Nano letters 2012, 12 (2), 827-832. 45. Mukherjee, S.; Bartlow, V. M.; Nair, S., Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chemistry of Materials 2005, 17 (20), 4900-4909. 46. Yucelen, G. I.; Kang, D.-Y.; Schmidt-Krey, I.; Beckham, H. W.; Nair, S., A generalized kinetic model for the formation and growth of single-walled metal oxide nanotubes. Chemical Engineering Science 2013, 90, 200-212. 47. Liou, K.-H.; Tsou, N.-T.; Kang, D.-Y., Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes. Nanoscale 2015, 7 (39), 16222-16229. 48. Liou, K. H.; Kang, D. Y., Defective Single‐Walled Aluminosilicate Nanotubes: Structural Stability and Mechanical Properties. ChemNanoMat 2016, 2 (3), 189-195. 49. Liao, Y.; Picot, P.; Brubach, J.-B.; Roy, P.; Le Caër, S.; Thill, A., Self-supporting thin films of imogolite and imogolite-like nanotubes for infrared spectroscopy. Applied Clay Science 2018, 164, 58-67. 50. Kang, D.-Y.; Zang, J.; Jones, C. W.; Nair, S., Single-walled aluminosilicate nanotubes with organic-modified interiors. The Journal of Physical Chemistry C 2011, 115 (15), 7676-7685. 51. Su, C.-Y.; Yang, A.-C.; Jiang, J.-S.; Yang, Z.-H.; Huang, Y.-S.; Kang, D.-Y.; Hua, C.-C., Properties of Single-Walled Aluminosilicate Nanotube/Poly (vinyl alcohol) Aqueous Dispersions. The Journal of Physical Chemistry B 2017, 122 (1), 380-391. 52. Zang, J.; Konduri, S.; Nair, S.; Sholl, D. S., Self-diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes. ACS nano 2009, 3 (6), 1548-1556. 53. Kang, D.-Y.; Tong, H. M.; Zang, J.; Choudhury, R. P.; Sholl, D. S.; Beckham, H. W.; Jones, C. W.; Nair, S., Single-walled aluminosilicate nanotube/poly (vinyl alcohol) nanocomposite membranes. ACS applied materials & interfaces 2012, 4 (2), 965-976. 54. Baroña, G. N. B.; Lim, J.; Choi, M.; Jung, B., Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 2013, 325, 138-147. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77169 | - |
| dc.description.abstract | 本研究利用新興材料氧化鋁矽奈米管(AlSiNT)與商用奈米銀線(AgNW)混合,並使用超音波噴塗技術於PET基材上製作透明導電薄膜(AgNW + AlSiNT薄膜)。這種新型混合薄膜成功突破AgNW薄膜在導電度提升時,穿透度會隨之下降的限制。我們探討AgNW與AlSiNT的混合濃度改變以及噴塗溶液的使用量對於導電度與穿透度的影響。本研究中AgNW + AlSiNT薄膜最佳效能表現為片電阻10 Ω/sq、穿透度94.2%,相較相同導電度表現的AgNW薄膜(片電阻10 Ω/sq、穿透度86.7%),此薄膜減少了33%的成本。我們利用SEM與EDS多點分析技術比較AgNW + AlSiNT薄膜與AgNW薄膜的差異,發現AlSiNT能夠幫助AgNW在成膜時分散更均勻,且在AgNW + AlSiNT薄膜中發現奈米銀顆粒(AgNP)的產生,使得AgNW+AlSiNT薄膜的導電度與穿透度表現都比較優異。我們認為將AlSiNT加入AgNW中,不僅能降低成本,同時也可以有效提升透明導電薄膜的導電度與穿透度效能。 | zh_TW |
| dc.description.abstract | In this work we mixed emerging aluminosilicate nanotube (AlSiNT) with the commercial silver nanowires solution (AgNW), and then cast this mixture on the flexible PET substrate by ultrasonic nozzle spray deposition (AgNW + AlSiNT film). The novel hybrid films transcend the performance upper bound of the commercially available silver nanowires. We investigated how the concentration of AgNW and AlSiNT and the amount of spray solution affect the conductivity and transparency of the film. In our hybrid system, the best performance of AgNW + AlSiNT film is 10 Ω/sq at 94.2% transmittance. Compared to the AgNW film with similar conductivity (10 Ω/sq at 86.7% transmittance), the film prepared in this work reduces 33% of the cost. We used SEM and EDS multi-point analysis techniques to investigate the difference between AgNW + AlSiNT film and AgNW film. It showed that AlSiNT helps AgNW to disperse uniformly during film formation, and silver nanoparticles were found in AgNW + AlSiNT film to make the performance better in conductivity and transparency. From our perspective, the addition of AlSiNT to AgNW does not only reduces the cost, but also effectively improves the conductivity and transparency of the transparent conductive film. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:15Z (GMT). No. of bitstreams: 1 ntu-108-R06524034-1.pdf: 3981407 bytes, checksum: ab334e401ce46e63324571e471d5d5d4 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 第二章 文獻回顧 2 2-1 透明導電薄膜 2 2-1-1 各種透明導電薄膜簡介 2 2-1-2 奈米銀線(AgNW)透明導電薄膜介紹 4 2-2 氧化鋁矽奈米管(AlSiNT) 5 2-2-1 氧化鋁矽奈米管簡介 5 2-2-2 以氧化鋁矽奈米管還原銀 6 第三章 實驗步驟 7 3-1 化學藥品 7 3-2 氧化鋁矽奈米管溶液之製備 7 3-3 以氧化鋁矽奈米管還原銀 8 3-4 透明導電薄膜之製備 8 3-4-1 配置噴塗溶液 8 3-4-2 使用超音波噴塗技術製作透明導電薄膜 9 3-5 檢測設備 13 第四章 結果與討論 16 4-1 氧化鋁矽奈米管結構鑑定 16 4-1-1 氧化鋁矽奈米管薄膜 16 4-2 以氧化鋁矽奈米管還原銀 17 4-2-1 穿透式電子顯微鏡檢測結果 17 4-2-2 還原銀反應時間曲線 19 4-3 透明導電薄膜之效能分析 20 4-3-1 穿透度及導電度表現 20 4-3-2 成本比較 28 4-3-3 霧度及導電度表現 30 4-4 透明導電薄膜之結構鑑定 31 4-4-1 噴塗溶液、薄膜巨觀分析 32 4-4-2 SEM、EDS結果分析 33 第五章 結論與未來展望 48 參考文獻 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氧化鋁矽奈米管 | zh_TW |
| dc.subject | 奈米銀線 | zh_TW |
| dc.subject | 透明導電薄膜 | zh_TW |
| dc.subject | 可撓曲性 | zh_TW |
| dc.subject | 超音波噴塗 | zh_TW |
| dc.subject | Silver nanowires (AgNW) | en |
| dc.subject | Flexibility | en |
| dc.subject | Aluminosilicate nanotube (AlSiNT) | en |
| dc.subject | Ultrasonic nozzle spray deposition | en |
| dc.subject | Transparent conductive film | en |
| dc.title | 以氧化鋁矽奈米管提升奈米銀線透明電極之效能 | zh_TW |
| dc.title | Improve Performance of Transparent Conductive Films of Silver Nanowires with Aluminosilicate Nanotube | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝之真;羅世強 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 氧化鋁矽奈米管,奈米銀線,透明導電薄膜,可撓曲性,超音波噴塗, | zh_TW |
| dc.subject.keyword | Aluminosilicate nanotube (AlSiNT),Silver nanowires (AgNW),Transparent conductive film,Flexibility,Ultrasonic nozzle spray deposition, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU201902334 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 3.89 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
