請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77167
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊任 | zh_TW |
dc.contributor.advisor | Chun-Jen Chen | en |
dc.contributor.author | 王挺羽 | zh_TW |
dc.contributor.author | Ting-Yu Wang | en |
dc.date.accessioned | 2021-07-10T21:49:10Z | - |
dc.date.available | 2024-10-16 | - |
dc.date.copyright | 2019-10-17 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Wicks, S.M., et al. Safety and tolerability of Ganoderma lucidum in healthy subjects: a double-blind randomized placebo-controlled trial. Am J Chin Med 35, 407-414 (2007).
2. Boh, B., Berovic, M., Zhang, J. & Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13, 265-301 (2007). 3. Boh, B., Berovic, M., Zhang, J. & Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. in Biotechnology Annual Review, Vol. 13 (ed. El-Gewely, M.R.) 265-301 (Elsevier, 2007). 4. Bhagwan, S.S., Gulab, S.T., Rakesh, K.B., Prasad, G.B.K.S. & Bisen, P.S. Ganoderma lucidum: A Potent Pharmacological Macrofungus. Current Pharmaceutical Biotechnology 10, 717-742 (2009). 5. Sasaki, T., Arai, Y., Ikekawa, T., Chihara, G. & Fukuoka, F. Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo) 19, 821-826 (1971). 6. Hsu, J.W., Huang, H.C., Chen, S.T., Wong, C.H. & Juan, H.F. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. Evid Based Complement Alternat Med 2011, 358717 (2011). 7. Lin, K.I., et al. Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J Biol Chem 281, 24111-24123 (2006). 8. <Structural features of immunologically active polysaccharides from Ganoderma lucidum.pdf>. 9. Lai, S.W., Lin, J.H., Lai, S.S. & Wu, Y.L. Influence of Ganoderma lucidum on blood biochemistry and immunocompetence in horses. Am J Chin Med 32, 931-940 (2004). 10. Cho, D. & Campana, D. Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29, 89-96 (2009). 11. Wang, C.-L., Lu, C.-Y., Hsueh, Y.-C., Liu, W.-H. & Chen, C.-J. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Applied Microbiology and Biotechnology 98, 9389-9398 (2014). 12. Pi, C.-C., et al. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 32, 401-408 (2014). 13. Wang, C.L., et al. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complementary and Alternative Medicine 12, 119 (2012). 14. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480 (2011). 15. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264 (2012). 16. Khalil, D.N., Smith, E.L., Brentjens, R.J. & Wolchok, J.D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273-290 (2016). 17. Mohammed, S., Bakshi, N., Chaudri, N., Akhter, J. & Akhtar, M. Cancer Vaccines: Past, Present, and Future. Adv. Anat. Pathol. 23, 180-191 (2016). 18. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11-22 (2004). 19. Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 411, 380-384 (2001). 20. Postow, M.A., et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 372, 2006-2017 (2015). 21. Isaksson, K., et al. A Population-Based Comparison of the AJCC 7th and AJCC 8th Editions for Patients Diagnosed with Stage III Cutaneous Malignant Melanoma in Sweden. Ann. Surg. Oncol. 26, 2839-2845 (2019). 22. Hathcock, K.S., et al. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262, 905-907 (1993). 23. Ribas, A. & Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350-+ (2018). 24. <CTLA-4-MEDIATED INHIBITION IN REGULATION OF T CELL RESPONSES: Mechanisms and Manipulation in Tumor Immunotherapy.pdf>. 25. Binnewies, M., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24, 541-550 (2018). 26. Hanahan, D. & Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 (2012). 27. Damuzzo, V., et al. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 88, 77-91 (2015). 28. Mandruzzato, S., et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65, 161-169 (2016). 29. Bronte, V., et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7, 12150 (2016). 30. Gabrilovich, D.I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253-268 (2012). 31. Koehn, B.H., et al. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 126, 1621-1628 (2015). 32. Nagaraj, S., et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature medicine 13, 828-835 (2007). 33. Lu, T., et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121, 4015-4029 (2011). 34. Molon, B., et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208, 1949-1962 (2011). 35. Youn, J.I., et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14, 211-220 (2013). 36. Cassetta, L. & Kitamura, T. Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors. Front Cell Dev Biol 6, 38-38 (2018). 37. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399-416 (2017). 38. Franklin, R.A., et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921-925 (2014). 39. Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11, 889-896 (2010). 40. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The Origin and Function of Tumor-Associated Macrophages. Immunol Today 13, 265-270 (1992). 41. Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural Innate and Adaptive Immunity to Cancer. Annual Review of Immunology, Vol 29 29, 235-271 (2011). 42. DeNardo, D.G., et al. CD4(+) T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell 16, 91-102 (2009). 43. Kratochvill, F., et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep 12, 1902-1914 (2015). 44. De Monte, L., et al. Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Res 76, 1792-1803 (2016). 45. Noy, R. & Pollard, J.W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity 41, 49-61 (2014). 46. Murray, P.J., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14-20 (2014). 47. Wang, L., et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. Journal of Experimental Medicine 208, 577-592 (2011). 48. Larsson, K., et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A 112, 8070-8075 (2015). 49. Takahashi, T., et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310 (2000). 50. Wing, K., et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275 (2008). 51. Turnis, M.E., et al. Interleukin-35 Limits Anti-Tumor Immunity. Immunity 44, 316-329 (2016). 52. Wilson, J.M., et al. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. J Immunol 182, 4616-4623 (2009). 53. Schubert, D., et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20, 1410-1416 (2014). 54. Chen, L. & Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242 (2013). 55. Martinez-Lostao, L., Anel, A. & Pardo, J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin Cancer Res 21, 5047-5056 (2015). 56. Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26, 389-420 (2008). 57. Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20, 323-370 (2002). 58. Takeda, K., et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7, 94-100 (2001). 59. Screpanti, V., Wallin, R.P., Grandien, A. & Ljunggren, H.G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42, 495-499 (2005). 60. Anel, A., Buferne, M., Boyer, C., Schmitt-Verhulst, A.M. & Golstein, P. T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. Eur J Immunol 24, 2469-2476 (1994). 61. <Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity.pdf>. 62. Doherty, P.C. & Christensen, J.P. Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18, 561-592 (2000). 63. Dart, A. Cell genesis. Nature Reviews Cancer 18, 339-339 (2018). 64. Wang, D.Y., et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol 4, 1721-1728 (2018). 65. Zhu, J., et al. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nature Communications 8, 1404 (2017). 66. Ostrand-Rosenberg, S., Sinha, P., Beury, D.W. & Clements, V.K. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Seminars in Cancer Biology 22, 275-281 (2012). 67. Wu, J. & Lanier, L.L. Natural killer cells and cancer. Advances in cancer research 90, 127-156 (2003). 68. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4, 11-22 (2004). 69. Walczak, H., et al. Tumoricidal activity of tumor necrosis factor–related apoptosis–inducing ligand in vivo. Nature medicine 5, 157 (1999). 70. Dierckx, T., et al. IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients. Blood cancer journal 7, e519 (2017). 71. Gorelik, L. & Flavell, R.A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature medicine 7, 1118 (2001). 72. Albeituni, S.H., et al. Yeast-Derived Particulate beta-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. J. Immunol. 196, 2167-2180 (2016). 73. Poon, E., et al. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. J Immunother Cancer 5, 63 (2017). 74. Gao, J., et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nature medicine 23, 551 (2017). 75. Stojanovic, A., Fiegler, N., Brunner-Weinzierl, M. & Cerwenka, A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in response to mature dendritic cells. The Journal of Immunology 192, 4184-4191 (2014). 76. Terme, M., et al. Cancer-induced immunosuppression: IL-18–elicited immunoablative NK cells. Cancer research 72, 2757-2767 (2012). 77. Crowe, N.Y., et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. The Journal of Immunology 171, 4020-4027 (2003). 78. Metelitsa, L., Weinberg, K., Emanuel, P. & Seeger, R. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17, 1068 (2003). 79. Hishiki, T., et al. Invariant natural killer T infiltration in neuroblastoma with favorable outcome. Pediatric surgery international 34, 195-201 (2018). 80. Pico de Coana, Y., Masucci, G., Hansson, J. & Kiessling, R. Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunol Immunother 63, 977-983 (2014). 81. Yu, G.T., et al. CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 5, e1151594 (2016). 82. Romano, E., et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A 112, 6140-6145 (2015). 83. Togashi, Y., et al. Clinicopathological, genomic and immunological features of hyperprogressive disease during PD-1 blockade in gastric cancer patients. J Clin Oncol 36(2018). 84. Sharma, A., et al. Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers. Clinical Cancer Research 25, 1233-1238 (2019). 85. Melero, I., et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nature reviews. Cancer 15, 457-472 (2015). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77167 | - |
dc.description.abstract | 靈芝是一種著名的藥用真菌,幾個世紀以來一直在亞洲用於治療各種疾病,而台灣紫芝 (Ganoderma formosanum) 是一種在台灣特有的靈芝品種。我們使用液態深層菌絲體培養來生產G. formosanum胞外多醣,並且經過膠體過濾法進行純化,得到三個主要分劃 (PS-F1、PS-F2、PS-F3)。本實驗室先前研究表明,G. formosanum的PS-F2具有抗腫瘤功能和免疫調節活性。在本研究中,我們研究了PS-F2結合免疫檢查點阻斷劑 (immune-checkpoint blockers; ICBs) anti-CTLA4抗體是否在CT26結直腸腫瘤小鼠中具有協同抗腫瘤作用。本研究共使用三種不同劑量anti-CTLA4抗體進行合併治療。結果表明,單獨口服PS-F2即可抑制腫瘤的生長,單獨給予anti-CTLA4抗體亦呈現劑量效應之抗腫瘤作用,並且PS-F2與anti-CTLA4抗體的合併治療可以更進一步抑制腫瘤生長。PS-F2與anti-CTLA4抗體單獨療法及合併療法皆能抑制帶腫瘤小鼠的脾臟腫大,且不會對動物之健康狀況造成顯著負面影響。在脾臟中,單獨與合併治療組其自然殺手T細胞比例有上升趨勢,而多核型骨髓衍生抑制細胞比例有下降趨勢。在腫瘤浸潤淋巴結中,合併治療組其調節型T細胞有上升趨勢。在腫瘤微環境中,單獨與合併治療組其第一型輔助T細胞及胞殺性T細胞比例有上升趨勢,而腫瘤相關巨噬細胞總數有下降趨勢。在腫瘤組織mRNA表現上,單獨給予PS-F2可顯著提升促發炎基因IL-1β、iNOS、TNF-a、IFN-β,而抑發炎基因TGF-β有顯著下降,Arginase-1則有下降趨勢。單獨給予anti-CTLA4抗體時,促發炎基因IL-1β、iNOS、TNF-a與抑發炎基因arginase-1、TGF-β對比PBS組皆顯著下降。另外合併治療對於上述基因表現之影響,則介於PS-F2與CTLA4單獨治療之間。整體來說,我們的數據證明PS-F2可通過活化抗腫瘤免疫反應發揮其抗腫瘤功能,並且當結合anti-CTLA4免疫療法時這些效果可以進一步增強,進而對於腫瘤生長產生加乘性之抑制效果,顯示PS-F2具有單獨用於輔助免疫療法,或與ICB聯合用於治療結直腸癌之潛力。 | zh_TW |
dc.description.abstract | Ganoderma is a renowned medicinal fungus and has been used for treating various diseases for centuries in Asia, and Ganoderma formosanum is a native Ganoderma species isolated in Taiwan. We have used the submerged mycelial culture to produce G. formosanum polysaccharides, and three polysaccharide fractions (PS-F1, PS-F2 and PS-F3) were purified by gel filtration chromatography. Our previous study showed that PS-F2 of G. formosanum has antitumor and immunomodulating activities. In this study, we investigated whether the combination of PS-F2 and the immune checkpoint blocker (ICB), anti-CTLA4 monoclonal antibody (mAb), had a synergistic antitumor effect in CT26 colorectal tumor-bearing mice. The results showed that oral administration of PS-F2 alone could suppress the growth of established tumor, and combined treatment with an anti-CTLA4 mAb could further inhibit tumor growth. PS-F2 monotherapy and combined therapy also suppressed splenomegaly in tumor-bearing mice without causing adverse effects on animals’ health. In the spleen, the combination therapy resulted in a significant increase in the proportion of IFN-γ+ natural killer T (NKT) cells and a decrease in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). In the tumor microenvironment, the combination therapy increased the proportion of type 1 T helper (Th1) cells and decreased the accumulation of tumor-associated macrophage (TAM). In the tumor tissue, PS-F2 administration significantly increased the expression of proinflammatory genes IL-1β, iNOS, TNF-α, and IFN-β, while downregulating the expression of anti-inflammatory genes TGF-β. In contrast, anti-CTLA4 treatment suppression the expression of both proinflammatory and anti-inflammatory genes. The combined treatment affected the expression of pro-/anti-inflammatory genes in the tumor tissue similar to anti-CTLA4 monotreatment. Overall, our data demonstrate that PS-F2 exerts its antitumor function by activating antitumor immune responses, and these effects can be further enhanced while combining the anti-CTLA4 immunotherapy, indicating that PS-F2 has the potential to be used in the adjuvant immunotherapy alone or in the combination with ICB for the colorectal cancer treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:10Z (GMT). No. of bitstreams: 1 ntu-108-R06b22041-1.pdf: 2962230 bytes, checksum: 44e5f21f3f3c7693baa0e6bf69a4087c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 I 致謝 II 中文摘要 III Abstract V 縮寫表 VII 一、 緒論 1 1. 靈芝 1 2. 靈芝多醣體 1 3. 免疫治療 2 4. 腫瘤微環境 (tumor microenvironment, TME) 3 5. 骨髓衍生抑制型細胞 (Myeloid-derived suppressor cells, MDSCs) 4 6. 腫瘤相關巨噬細胞 (tumor- associated macrophage, TAM) 4 7. 調節型T細胞 (regulatory T cells, Treg cells) 5 8. 細胞毒性T細胞 (cytotoxic T lymphocytes, CTLs) 6 二、 研究動機 7 三、 材料與方法 8 1. 實驗動物、細胞株與菌株 8 2. 紫芝培養基配製 8 3. 臺灣紫芝培養 9 4. 臺灣紫芝胞外多醣體PS-F2純化 9 5. 測定醣濃度 10 6. PS-F2結合免疫檢查點阻斷藥物anti-CTLA-4之抗腫瘤效果 10 7. 脾臟細胞製備 11 8. 浸潤淋巴結細胞製備 11 9. 腫瘤細胞製備 12 10. 細胞外染 12 11. 細胞內染 13 12. 組織RNA轉cDNA 14 13. Real-time Quantitative PCR (QPCR) 15 14. 統計與分析 15 四、 實驗結果 16 1. 靈芝胞外多醣體PS-F2合併免疫檢查點阻斷藥物Anti-CTLA4 mAb對於 已形成腫瘤之抗腫瘤效果。 16 2. PS-F2合併anti-CTLA4 mAb治療對於肝腎指數的影響。 17 3. PS-F2合併anti-CTLA4 mAb治療對於脾臟effector Th1和CTL細胞的影 響。 17 4. PS-F2合併Anti-CTLA4 mAb治療對於脾臟MDSCs的影響。 18 5. PS-F2合併Anti-CTLA4 mAb對於脾臟M-MDSCs成熟與分化的影響。 19 6. PS-F2合併Anti-CTLA4 mAb治療對於脾臟調節型T細胞的影響。 19 7. PS-F2合併Anti-CTLA4 mAb治療對於脾臟NK cells和NKT cells的影 響。 20 8. PS-F2合併Anti-CTLA4 mAb治療對於浸潤淋巴結effector Th1和CTL 細胞的影響。 21 9. PS-F2合併Anti-CTLA4 mAb治療對於浸潤淋巴結調節型T細胞的影響 21 10. PS-F2合併Anti-CTLA4 mAb治療對於腫瘤組織effector Th1和CTLs細胞的影響 21 11. PS-F2合併Anti-CTLA4 mAb治療對於腫瘤MDSCs的影響 22 12. PS-F2合併Anti-CTLA4 mAb治療對於腫瘤M-MDSC成熟與分化的影響 23 13. PS-F2合併Anti-CTLA4 mAb治療對於腫瘤調節型T細胞的影響 23 14. PS-F2合併Anti-CTLA4 mAb治療對於TAM的影響 24 15. PS-F2合併Anti-CTLA4 mAb治療對於腫瘤組織發炎相關因子的影響 24 五、 討論 25 六、 圖表 30 七、 參考資料 77 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣紫芝多醣體合併CTLA4阻斷劑之抗腫瘤效果 | zh_TW |
dc.title | Antitumor effect of combination therapy with Ganoderma formosanum polysaccharides and CTLA4 blockade | en |
dc.type | Thesis | - |
dc.date.schoolyear | 108-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江皓森;陳念榮 | zh_TW |
dc.contributor.oralexamcommittee | Hao-Sen Chiang;Nien-Jung Chen | en |
dc.subject.keyword | 台灣紫芝,多醣體,免疫治療,骨髓衍生抑制細胞,T細胞,免疫檢查點阻斷劑, | zh_TW |
dc.subject.keyword | Ganoderma formosanum,immunotherapy,extracellular polysaccharide,MDSCs,T cells,immune checkpoint blocker, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU201904189 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-10-09 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。