請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77166完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | zh_TW |
| dc.contributor.advisor | Jui-che Tsai | en |
| dc.contributor.author | 陳錫勳 | zh_TW |
| dc.contributor.author | Hsi-Hsun Chen | en |
| dc.date.accessioned | 2021-07-10T21:49:09Z | - |
| dc.date.available | 2024-11-01 | - |
| dc.date.copyright | 2019-11-04 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1.H.-H. Chen, J.-H. Gu, Y.-X. Lai, W.-C. Lee, and J.-C. Tsai, "Digital Photography Using a High-Transmittance Electro-Optical Iris," IEEE Photonics Journal 11, 1-8 (2019).
2.H.-H. Chen, Y.-X. Lai, W.-C. Lee, and J.-C. Tsai, "Depth Camera Using High-Transmittance Off-Axis Dual Electro-Optical Irises," IEEE Photonics Journal 11, 1-7 (2019). 3.R. F. Fischer, Optical Systems Design, Second Edition (McGraw-Hill Professional, 2007). 4.M. Xu, H. Ren, and Y.-H. Lin, "Electrically actuated liquid iris," Opt. Lett. 40, 831-834 (2015). 5.J.-h. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, "Variable aperture controlled by microelectrofluidic iris," Opt. Lett. 38, 2919-2922 (2013). 6.L. Li, C. Liu, H. Ren, and Q.-H. Wang, "Adaptive liquid iris based on electrowetting," Opt. Lett. 38, 2336-2338 (2013). 7.H. Ren and S.-T. Wu, "Optical switch using a deformable liquid droplet," Opt. Lett. 35, 3826-3828 (2010). 8.C. Liu and D. Wang, "Light intensity and FOV-controlled adaptive fluidic iris," Appl. Opt. 57, D27-D31 (2018). 9.D. Wang, C. Liu, L. Li, X. Zhou, and Q.-H. Wang, "Adjustable liquid aperture to eliminate undesirable light in holographic projection," Opt. Express 24, 2098-2105 (2016). 10.S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, "Variable optofluidic slit aperture," Light: Science & Applications 5, e16005 (2016). 11.H. Ren, S. Xu, D. Ren, and S.-T. Wu, "Novel optical switch with a reconfigurable dielectric liquid droplet," Opt. Express 19, 1985-1990 (2011). 12.C. G. Tsai and J. A. Yeh, "Circular dielectric liquid iris," Opt. Lett. 35, 2484-2486 (2010). 13.S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, "The engineered eyeball, a tunable imaging system using soft-matter micro-optics," Light: Science & Applications 5, e16068 (2016). 14.C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, "Electrowetting driven optical switch and tunable aperture," Opt. Express 19, 15525-15531 (2011). 15.P. Muller, R. Feuerstein, and H. Zappe, "Integrated Optofluidic Iris," Journal of Microelectromechanical Systems 21, 1156-1164 (2012). 16.L. Li, C. Liu, and Q.-H. Wang, "Optical switch based on tunable aperture," Opt. Lett. 37, 3306-3308 (2012). 17.L. Li, C. Liu, M. Wang, and Q. Wang, "Adjustable Optical Slit Based on Electrowetting," IEEE Photonics Technology Letters 25, 2423-2426 (2013). 18.Z. Zuowei, R. Hongwen, and N. Changwoon, "Adaptive liquid crystal iris," Japanese Journal of Applied Physics 53, 092201 (2014). 19.A. Y.-G. Fuh, K. N. Chen, and S.-T. Wu, "Smart electro-optical iris diaphragm based on liquid crystal film coating with photoconductive polymer of poly(N-vinylcarbazole)," Appl. Opt. 55, 6034-6039 (2016). 20.T. Deutschmann and E. Oesterschulze, "Integrated electrochromic iris device for low power and space-limited applications," Journal of Optics 16, 075301 (2014). 21.T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, "High contrast electrochromic iris," Opt. Express 23, 31544-31549 (2015). 22.H. Ren, S. Xu, and S.-T. Wu, "Effects of gravity on the shape of liquid droplets," Optics Communications 283, 3255-3258 (2010). 23.P. Formentín, R. Palacios, J. Ferré-Borrull, J. Pallarés, and L. F. Marsal, "Polymer-dispersed liquid crystal based on E7: Morphology and characterization," Synthetic Metals 158, 1004-1008 (2008). 24.蔡佳怡, "摻雜染料「液晶-聚合物」薄膜在光學快速記錄性質之研究," 國立成功大學物理所碩士論文 (2002). 25.J. Bardsley, "Laplace-distributed increments, the Laplace prior, and edge-preserving regularization," Journal of Inverse and Ill-posed Problems 20, 271–285 (2012). 26.J. Nocedal and S. Wright, Numerical Optimization (Springer New York, 2006). 27.S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," Found. Trends Mach. Learn. 3, 1-122 (2011). 28.D. L. Donoho and J. M. Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika 81, 425-455 (1994). 29.F. Jin, P. Fieguth, L. Winger, and E. Jernigan, "Adaptive Wiener filtering of noisy images and image sequences," in Proceedings 2003 International Conference on Image Processing (ICIP), 2003, III-349. 30.A. Fossati, J. Gall, H. Grabner, X. Ren, and K. Konolige, Consumer Depth Cameras for Computer Vision - Research Topics and Applications (2012). 31.F. Adnan and W. Chee Sun, "A Survey of Human Action Recognition Approaches that use an RGB-D Sensor," IEIE Transactions on Smart Processing & Computing 4, 281-290 (2015). 32.J. T. Barron, A. Adams, Y. Shih, and C. Hernandez, "Fast bilateral-space stereo for synthetic defocus," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4466-4474. 33.N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman, N. Kanazawa, R. Carroll, Y. Movshovitz-Attias, J. T. Barron, Y. Pritch, and M. Levoy, "Synthetic depth-of-field with a single-camera mobile phone," J ACM Trans. Graph 37, 1-13 (2018). 34.J. Valentin, A. Kowdle, J. T. Barron, N. Wadhwa, M. Dzitsiuk, M. Schoenberg, V. Verma, A. Csaszar, E. Turner, I. Dryanovski, J. Afonso, J. Pascoal, K. Tsotsos, M. Leung, M. Schmidt, O. Guleryuz, S. Khamis, V. Tankovitch, S. Fanello, S. Izadi, and C. Rhemann, "Depth from motion for smartphone AR," J ACM Trans. Graph 37, 1-19 (2018). 35.A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision benchmark suite," in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 3354-3361. 36.C. Godard, O. M. Aodha, and G. J. Brostow, "Unsupervised Monocular Depth Estimation with Left-Right Consistency," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 6602-6611. 37.M. A. Vázquez and F. J. Cuevas, "A 3D Facial Recognition System Using Structured Light Projection," in 2014 Proceedings of the 9th International Conference on Hybrid Artificial Intelligence Systems, 2014, 241-253. 38.A. Islam, M. A. Hossain, and J. Yeong Min, "Interference mitigation technique for Time-of-Flight (ToF) camera," in 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), 2016, 134-139. 39.F. Li, H. Chen, A. Pediredla, C. Yeh, K. He, A. Veeraraghavan, and O. Cossairt, "CS-ToF: High-resolution compressive time-of-flight imaging," Opt. Express 25, 31096-31110 (2017). 40.S. Park, J. Jang, S. Lee, and J. Paik, "Optical range-finding system using a single-image sensor with liquid crystal display aperture," Opt. Lett. 41, 5154-5157 (2016). 41.J. Geng, "Structured-light 3D surface imaging: a tutorial," Adv. Opt. Photon. 3, 128-160 (2011). 42.P. Rangarajan, I. Sinharoy, P. Papamichalis, and M. Christensen, "Pushing the limits of digital imaging using structured illumination," in 2011 International Conference on Computer Vision (ICCV), 2011, pp. 1315-1322. 43.J. Ku, A. Harakeh, and S. Waslander, "In Defense of Classical Image Processing: Fast Depth Completion on the CPU," in 2018 15th Conference on Computer and Robot Vision (CRV), 2018, pp. 16-22. 44.http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/T3P5.pdf. 45.E. Grosso and M. Tistarelli, "Active/dynamic stereo vision," IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 868-879 (1995). 46.E. Lee, E. Chae, H. Cheong, S. Jeon, and J. Paik, "Depth-based defocus map estimation using off-axis apertures," Opt. Express 23, 21958-21971 (2015). 47.S. Lee, M. H. Hayes, and J. Paik, "Distance estimation using a single computational camera with dual off-axis color filtered apertures," Opt. Express 21, 23116-23129 (2013). 48.A. Levin, W. T. Freeman, and F. Durand, "Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections," in 2008 Proceedings of the 10th European Conference on Computer Vision (ECCV), 2008, 88-101. 49.C. Zhou and S. K. Nayar, "Computational Cameras: Convergence of Optics and Processing," IEEE Transactions on Image Processing 20, 3322-3340 (2011). 50.S. K. Nayar, "Computational Cameras: Redefining the Image," Computer 39, 30-38 (2006). 51.F. P. Nicoletta, G. De Filpo, J. Lanzo, and G. Chidichimo, "A method to produce reverse-mode polymer-dispersed liquid-crystal shutters," Applied Physics Letters 74, 3945-3947 (1999). 52.P. S. Drzaic, Liquid crystal dispersions (Singapore : World scientific, 1995). 53.C.-C. Chang, T.-Y. Chen, and J.-C. Tsai, "Magnetically Driven MEMS Cat’s Eye Array as an Optical Identification," IEEE Photonics Technology Letters 28, 554-556 (2016). 54.W.-C. Shih, C.-H. Lyu, B.-J. Chen, S.-H. Yu, and J.-C. Tsai, "Non-mechanical solid tunable diaphragm with a large optical aperture," in 2016 International Conference on Optical MEMS and Nanophotonics (OMN), 2016, 1-2. 55.J.-H. Gu, W.-C. Lee, Y.-F. Chen, S.-H. Yu, and J.-C. Tsai, "Stepped-Tuning Optical Diaphragm Fabricated with a Lithography-Less Process," in 2018 International Conference on Optical MEMS and Nanophotonics (OMN), 2018, pp. 1-2. 56.D. Sun, S. Roth, and M. J. Black, "Secrets of optical flow estimation and their principles," in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, 2432-2439. 57.M. Aggarwal, H. Hua, and N. Ahuja, "On cosine-fourth and vignetting effects in real lenses," in 2001 Proceedings Eighth IEEE International Conference on Computer Vision (ICCV), 2001, 472-479 vol.471. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77166 | - |
| dc.description.abstract | 在本論文中,我們首先探索了結合高分子分散液晶(Polymer Dispersed Liquid Crystal)光圈與光學相機的可能性。透過材料、製程、光電系統、計算與實驗設計的開發與研究,我們所提出的光電系統在數位攝影與深度感測上,展現了良好並可靠的效能與成果。
高分子分散液晶由液晶與高分子材料所組成,是一種可以藉由驅動電壓調變的材料。比起傳統的液晶,高分子分散液晶的主要優點是具有較高的穿透率,非機械式與可調變。這些特性具有潛力符合自動化相機的系統需求,例如高訊雜比與可程式化功能。藉由利用高分子分散型液晶的這些優點及採用簡易實現的製程,我們設計了光電光圈(electro-optical iris)及更進階的版本:離軸雙光電光圈(off-axis dual electro-optical irises)。結合計算,搭配光電光圈的相機系統成功生成了高訊雜比的影像,有利於數位攝影的應用。而搭配離軸雙光電光圈的相機系統,在實驗結果與理論計算的佐證下,展現了可靠的深度感測能力。 在我們研究了高分子分散型液晶與光學相機的結合後,基於此組合的數位攝影與深度感測的應用已具有可行性與發展的潛力。而在我們研究過程中所探索的材料方法、製程技術與運算方法,也期望能夠對自動化技術、光電元件與行動攝影的發展有所貢獻。 | zh_TW |
| dc.description.abstract | In this dissertation, we first investigate the imaging solutions using polymer-dispersed-liquid-crystal (PDLC) irises and an optical camera. Through exploring the design and research over material, fabrication, photonics system, computation and experiments, the proposed electro-optical systems have the reliable performance for digital photography and depth sensing.
The PDLC is a material consists of liquid crystal and polymer, which is non-mechanical, and switchable by adjusting the driving voltage. The higher transmittance is the main advantage compared to the traditional polarization-sensitive liquid crystal material, and has the potential to meet the requirements of automated camera system, such as high signal-to-noise ratio or programmable function. By leveraging these benefits of PDLC, we design an electro-optical iris and a more advanced version: off-axis dual electro-optical (DEO) irises through easy and compact fabrication process. With the computational methods, the camera system with the electro-optical iris can generate the low-noise image for photography applications. The depth system with DEO irises shows the robust depth sensing capability with theoretical-experimental consistency. As the first investigation to the combination of PDLC and camera, the digital photography and depth sensing become the possible solutions. We expect the further advanced exploration, and our idea and experience in material synthesis, fabrication process and computational methods also has potential impact to the future progress in automated camera, electro-optical device and mobile photography. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:49:09Z (GMT). No. of bitstreams: 1 ntu-108-D03941029-1.pdf: 5744754 bytes, checksum: 15598949e0e56f83edd09fad95ebd0d4 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 目錄 v 圖目錄 vii 表目錄 x Chapter 1. 緒論 1 1.1 前言 1 1.2 光圈 2 1.3 可調變光圈 3 1.3.1 液態光圈 3 1.3.2 液晶光圈 4 1.3.3 電化學光圈 5 1.3.4 各類可調變光圈之比較 7 1.4 高分子分散液晶 8 1.5 論文架構 10 Chapter 2. 光電光圈 11 2.1 光電光圈之製程 11 2.2 光電光圈之影像系統 13 Chapter 3. 利用光電光圈之數位攝影 16 3.1 影像處理方法 16 3.2 實驗結果 19 Chapter 4. 離軸雙光電光圈 22 4.1 離軸雙光電光圈製程與系統 25 Chapter 5. 離軸雙光電光圈相機之深度感測 28 5.1 離軸雙光圈深度感測原理 28 5.2 實驗結果 35 5.3 討論 37 Chapter 6. 結論與未來展望 38 6.1 結論 38 6.2 未來展望 39 參考文獻 40 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 深度相機 | zh_TW |
| dc.subject | 高分子分散液晶 | zh_TW |
| dc.subject | 數位攝影 | zh_TW |
| dc.subject | polymer dispersed liquid crystal (PDLC) | en |
| dc.subject | digital photography | en |
| dc.subject | depth camera | en |
| dc.title | 將高分子分散液晶光圈應用於數位相機之研析 | zh_TW |
| dc.title | Study on the Applications of Polymer-Dispersed-Liquid-Crystal (PDLC) Irises in Digital Cameras | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林慶波;孫家偉;鍾仁傑;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Po Lin;Chia-Wei Sun;Ren-Jei Chung;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 高分子分散液晶,數位攝影,深度相機, | zh_TW |
| dc.subject.keyword | polymer dispersed liquid crystal (PDLC),digital photography,depth camera, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU201904237 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-10-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
