請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77125完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
| dc.contributor.author | Cheng-Hsun Wu | en |
| dc.contributor.author | 吳政勳 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:47:37Z | - |
| dc.date.available | 2021-07-10T21:47:37Z | - |
| dc.date.copyright | 2020-02-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-04 | |
| dc.identifier.citation | 1. Mulder, M.; Mulder, J., Basic Principles of Membrane Technology. Springer Science & Business Media: 1996.
2. McGowan, W.; Harrison, J., Water processing: residential, commercial, light-industrial. Lisle, IL. Water Quality Association 2000. 3. Takano, N.; Einaga, Y.; Fujita, H., Phase equilibrium in the binary system polyisoprene+ dioxane. Polymer journal 1985, 17 (10), 1123. 4. Finch, C., Synthetic polymer membranes‐a structural perspective, By Robert E. Kesting, John Wiley & Sons, Chichester & New York, 1985. pp xii+ 348, price i55. 75. ISBN 0‐471‐80717‐6. British Polymer Journal 1986, 18 (3), 211-211. 5. Kesting, R., Concerning the microstructure of dry‐RO membranes. Journal of Applied Polymer Science 1973, 17 (6), 1771-1785. 6. Boom, R.; Wienk, I.; Van den Boomgaard, T.; Smolders, C., Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. Journal of Membrane Science 1992, 73 (2-3), 277-292. 7. Park, H. C.; Kim, Y. P.; Kim, H. Y.; Kang, Y. S., Membrane formation by water vapor induced phase inversion. Journal of Membrane Science 1999, 156 (2), 169-178. 8. Caquineau, H.; Menut, P.; Deratani, A.; Dupuy, C., Influence of the relative humidity on film formation by vapor induced phase separation. Polymer Engineering & Science 2003, 43 (4), 798-808. 9. Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T., Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of applied polymer science 1999, 74 (1), 171-178. 10. Kiefer, J.; Hilborn, J.; Hedrick, J., Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer 1996, 37 (25), 5715-5725. 11. Kiefer, J.; Hedrick, J. L.; Hilborn, J. G., Macroporous thermosets by chemically induced phase separation. In Macromolecular Architectures, Springer: 1999; pp 161-247. 12. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817. 13. Wang, D.-M.; Lai, J.-Y., Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering 2013, 2 (2), 229-237. 14. Barton, A. F., CRC handbook of solubility parameters and other cohesion parameters. Routledge: 2017. 15. Cabasso, I.; Klein, E.; Smith, J. K., Polysulfone hollow fibers. I. Spinning and properties. Journal of Applied Polymer Science 1976, 20 (9), 2377-2394. 16. Cabasso, I.; Klein, E.; Smith, J. K., Polysulfone hollow fibers. II. Morphology. Journal of applied Polymer science 1977, 21 (1), 165-180. 17. Tsai, J.; Su, Y.; Wang, D.; Kuo, J.; Lai, J.; Deratani, A., Retainment of pore connectivity in membranes prepared with vapor-induced phase separation. Journal of Membrane Science 2010, 362 (1-2), 360-373. 18. Rubinstein, M.; Colby, R. H., Polymer physics. Oxford university press New York: 2003; Vol. 23. 19. Zeman, L.; Fraser, T., Formation of air-cast cellulose acetate membranes. Part I. Study of macrovoid formation. Journal of membrane science 1993, 84 (1-2), 93-106. 20. Reuvers, A.; Altena, F.; Smolders, C., Demixing and gelation behavior of ternary cellulose acetate solutions. Journal of polymer science part B: Polymer physics 1986, 24 (4), 793-804. 21. Gaides, G.; McHugh, A., Gelation in an amorphous polymer: a discussion of its relation to membrane formation. Polymer 1989, 30 (11), 2118-2123. 22. Winter, H. H.; Chambon, F., Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of rheology 1986, 30 (2), 367-382. 23. Lin, F.-C.; Wang, D.-M.; Lai, J.-Y., Asymmetric TPX membranes with high gas flux. Journal of membrane science 1996, 110 (1), 25-36. 24. Stropnik, Č.; Musil, V.; Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer 2000, 41 (26), 9227-9237. 25. Bindschaedler, C.; Gurny, R.; Doelker, E.; Peppas, N. A., Thermodynamics of swelling of polymer latex particles by a water-soluble solvent: I. Theoretical considerations. Journal of colloid and interface science 1985, 108 (1), 75-82. 26. 蘇順良, 高分子鏈糾纏對相分離動力學與薄膜結構之影響. 臺灣大學化學工程學研究所學位論文 2017, (2017 年), 1-166. 27. Su, S.-L.; Wang, D.-M.; Lai, J.-Y., Critical residence time in metastable region–a time scale determining the demixing mechanism of nonsolvent induced phase separation. Journal of membrane science 2017, 529, 35-46. 28. 洪偉倫, 非溶劑誘導式相分離過程之膜結構生成探討. 臺灣大學化學工程學研究所學位論文 2016, 1-230. 29. 蔡榮贊, 蒸氣誘導式相分離過程之蕾絲結構生成與合併探討. 臺灣大學化學工程學研究所學位論文 2010, 1-207. 30. Davila, M. J.; Alcalde, R.; Aparicio, S., Pyrrolidone derivatives in water solution: an experimental and theoretical perspective. Industrial & Engineering Chemistry Research 2008, 48 (2), 1036-1050. 31. Prokopenko, N. A.; Bethea, I. A.; Clemens, C. J.; Klimek, A.; Wargo, K.; Spivey, C.; Waziri, K.; Grushow, A., The effect of structure on hydrogen bonding: hydrogen bonded lactam dimers in CCl 4. Physical Chemistry Chemical Physics 2002, 4 (3), 490-495. 32. Malkin, A. Y.; Tager, A.; Vinogradov, G., Viscosity, rubber elasticity, and viscoelasticity of concentrated polymer solutions. Polymer Mechanics 1973, 9 (4), 639-645. 33. Larson, R. G., The structure and rheology of complex fluids. Oxford university press New York: 1999; Vol. 150. 34. Sperling, L. H., Introduction to physical polymer science. John Wiley & Sons: 2005. 35. Rubinstein, M.; Semenov, A. N., Dynamics of entangled solutions of associating polymers. Macromolecules 2001, 34 (4), 1058-1068. 36. Israelachvili, J. N., Intermolecular and surface forces. Academic press: 2015. 37. Adam, M.; Delsanti, M., Viscosity and longest relaxation time of semi-dilute polymer solutions. I. Good solvent. Journal de Physique 1983, 44 (10), 1185-1193. 38. Adam, M.; Delsanti, M., Viscosity and longest relaxation time of semi-dilute polymer solutions: II. Theta solvent. Journal de Physique 1984, 45 (9), 1513-1521. 39. Colby, R. H.; Fetters, L. J.; Funk, W. G.; Graessley, W. W., Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules 1991, 24 (13), 3873-3882. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77125 | - |
| dc.description.abstract | 先前的研究認為,高分子薄膜的結構型態與其鑄膜液在介穩區(meta-stable region)中的穩定程度有關,此穩定程度可以用溶液在介穩區的臨界滯留時間(tmc)來評估。tmc愈長,表示高分子溶液在介穩區較穩定,需停留較久才會進行成核成長(nucleation and growth)相分離,在此停留時間,溶劑與非溶劑交換會持續進行,溶液組成便有較高的機會進到非穩區(unstable region),以spinodal decomposition的機制進行相分離,形成孔洞連通的結構。
本研究進一步對tmc與鑄膜液流變性質的關聯性作探討,結果顯示tmc與高分子鏈的鬆弛時間(relaxation time)有關。鑄膜液鬆弛時間愈長的成膜系統,對應的tmc值會愈高,容易製備出孔洞連通的高分子膜。 另外也觀察到高分子鏈的鬆弛時間長短與其分子間作用力的強弱有關,因此醋酸纖維素(cellulose acetate, CA)、三醋酸纖維素(cellulose triacetate, CTA)這類具分子間氫鍵作用力的成膜系統,會較容易形成孔洞連通的結構。除了分子間作用力外,高分子鏈的糾纏(entanglement)亦會影響鬆弛時間。對於不易糾纏的聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA)溶液,要在高分子濃度較高時,鬆弛時間才能高到可以生成連通孔洞的程度。本研究亦將引用文獻上對於有高分子鏈糾纏與無糾纏狀態下分子間作用力對鏈鬆弛時間影響的理論分析,來解釋本研究所觀察到的現象。 | zh_TW |
| dc.description.abstract | According to some literatures, the structure of polymer membrane is related to the stability of its casting solution in meta-stable region, which can be evaluated by the critical residence time for the solution to stay in meta-stable region (tmc). Larger tmc means that the polymer solution is more stable in meta-stable region. As a result, it will undergo nucleation and growth only if the residence time is long enough. During this residence time, the solvent and nonsolvent will keep exchanging with each other, causing more opportunity to enter the unstable region and undergo spinodal decomposition to generate the bi-continuous lacy structure which has more connective pores.
This research further focused on the relationship between tmc and the rheological properties of the casting solution. The results show that tmc is related to the relaxation time of polymer chains. The membrane formation systems with higher relaxation time will also have higher tmc, and thus more easily to obtain the pore-connective structure. The value of the relaxation time is associated with the intermolecular interaction. Therefore, polymers which can form intermolecular hydrogen bonding, such as cellulose acetate or cellulose triacetate, will have more chance to get the pore-connective structure. Except for the intermolecular interaction, the entanglement of the polymer chain will also affect the relaxation time. For the poly (methyl methacrylate) system, whose polymer chains are more difficult to entangle, higher polymer concentration is needed for the relaxation time to rise to an extent that connective pores can be generated. This research will also explain the above phenomenon using the literatures which analyze the effect of intermolecular interaction on the relaxation time of polymer chains with and without entanglement. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:47:37Z (GMT). No. of bitstreams: 1 ntu-109-R06524018-1.pdf: 4937170 bytes, checksum: 160ea2c222d348266d9a6256d0515c4e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1. 薄膜簡介 1 1-2. 薄膜製備方式 3 1-2-1. 熱誘導式相分離法(Thermal-Induced Phase Separation, TIPS) 4 1-2-2. 乾式法(Solvent evaporation) 5 1-2-3. 溼式法(Wet immersion process) 5 1-2-4. 蒸氣誘導式相分離法(Vapor-Induced Phase Separation, VIPS) 6 1-2-5. 化學誘導式相分離法(Chemically-Induced Phase Separation, CIPS) 6 1-3. 非溶劑誘導式相分離法成膜程序 8 1-4. 非溶劑誘導式相分離法成膜理論 12 1-4-1. 熱力學 12 1-4-1-1. 液-液相分離(Liquid-liquid phase separation) 13 1-4-1-2. 膠化(Gelation) 14 1-4-2. 質傳動力學 15 1-5. 三醋酸纖維素(cellulose triacetate)性質介紹 18 1-6. 文獻回顧 19 1-7. 研究動機與目的 28 第二章 實驗材料及研究方法 29 2-1. 實驗材料 29 2-2. 實驗儀器 29 2-3. 實驗方法 30 2-3-1. 高分子溶液配製 30 2-3-2. 溼式法成膜 30 2-3-3. 薄膜結構分析 31 2-3-4. 高分子溶液流變性質量測 33 2-3-5. 以Maxwell model計算鬆弛時間 35 第三章 結果與討論 41 3-1. 介穩區臨界滯留時間(tmc)與溶液流變性質之關係 41 3-2. 鬆弛時間與分子間作用力 50 3-3. 醋酸纖維素、三醋酸纖維素薄膜結構 53 3-4. 成長次方與機制探討 60 第四章 結論 67 參考文獻 69 附錄一:高分子溶液黏度剪切稀化行為 73 附錄二:高分子溶液黏彈性之量測結果 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氫鍵 | zh_TW |
| dc.subject | 流變性質 | zh_TW |
| dc.subject | 鬆弛時間 | zh_TW |
| dc.subject | 分子間作用力 | zh_TW |
| dc.subject | 糾纏 | zh_TW |
| dc.subject | relaxation time | en |
| dc.subject | rheological properties | en |
| dc.subject | entanglement | en |
| dc.subject | hydrogen bonding | en |
| dc.subject | intermolecular interaction | en |
| dc.title | 高分子溶液的流變性質與膜結構之關聯 | zh_TW |
| dc.title | The Relationship between Rheological Properties and Membrane Structure of Different Polymer/Solvent Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李佳玲(Chia-Ling Li) | |
| dc.contributor.oralexamcommittee | 鄭國忠(Kuo-Chung Cheng),朱文彬(Wen-Bing Chu) | |
| dc.subject.keyword | 流變性質,鬆弛時間,分子間作用力,氫鍵,糾纏, | zh_TW |
| dc.subject.keyword | rheological properties,relaxation time,intermolecular interaction,hydrogen bonding,entanglement, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202000323 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-02-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-R06524018-1.pdf 未授權公開取用 | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
