Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊維元(Wei-Yuan Yang)
dc.contributor.authorHsiang-Yi Changen
dc.contributor.author張項詒zh_TW
dc.date.accessioned2021-07-10T21:47:22Z-
dc.date.available2021-07-10T21:47:22Z-
dc.date.copyright2021-03-04
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1 Yin, Z., Pascual, C. Klionsky, D. Autophagy: machinery and regulation. Microbial Cell 3, 588-596, doi:10.15698/mic2016.12.546 (2016).
2 Li, W. W., Li, J. Bao, J. K. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69, 1125-1136, doi:10.1007/s00018-011-0865-5 (2012).
3 Cuervo, A. M. Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24, 92-104, doi:10.1038/cr.2013.153 (2014).
4 Feng, Y., He, D., Yao, Z. Klionsky, D. J. The machinery of macroautophagy. Cell Res 24, 24-41, doi:10.1038/cr.2013.168 (2014).
5 Li, L., Chen, Y. Gibson, S. B. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25, 50-65, doi:10.1016/j.cellsig.2012.09.020 (2013).
6 Hu, J. et al. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death. Cell Death Dis 7, e2323, doi:10.1038/cddis.2016.230 (2016).
7 Walczak, M. Martens, S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9, 424-425, doi:10.4161/auto.22931 (2013).
8 Romanov, J. et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. The EMBO Journal 31, 4304-4317, doi:10.1038/emboj.2012.278 (2012).
9 Satoo, K. et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28, 1341-1350, doi:10.1038/emboj.2009.80 (2009).
10 Itakura, E. Mizushima, N. Syntaxin 17: the autophagosomal SNARE. Autophagy 9, 917-919, doi:10.4161/auto.24109 (2013).
11 Okamoto, K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205, 435-445, doi:10.1083/jcb.201402054 (2014).
12 Johri, A. Beal, M. F. Mitochondrial Dysfunction in Neurodegenerative Diseases. Journal of Pharmacology and Experimental Therapeutics 342, 619-630, doi:10.1124/jpet.112.192138 (2012).
13 Argyriou, C., D’Agostino, M. D. Braverman, N. Peroxisome biogenesis disorders. Translational Science of Rare Diseases 1, 111-144, doi:10.3233/trd-160003 (2016).
14 Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126, 939-952, doi:10.1242/jcs.114819 (2013).
15 Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature Cell Biology 14, 177-185, doi:10.1038/ncb2422 (2012).
16 Yang, J. Y. Yang, W. Y. Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy 7, 1230-1238, doi:10.4161/auto.7.10.16626 (2011).
17 Jin, S. M. Youle, R. J. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science 125, 795-799, doi:10.1242/jcs.093849 (2012).
18 Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proceedings of the National Academy of Sciences 113, E7490-E7499, doi:10.1073/pnas.1615455113 (2016).
19 Narendra, D., Tanaka, A., Suen, D.-F. Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology 183, 795-803, doi:10.1083/jcb.200809125 (2008).
20 Fumagalli, F. et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nature Cell Biology 18, 1173-1184, doi:10.1038/ncb3423 (2016).
21 Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nature Cell Biology 17, 1259-1269, doi:10.1038/ncb3230 (2015).
22 Jacobson, K., Rajfur, Z., Vitriol, E. Hahn, K. Chromophore-assisted laser inactivation in cell biology. Trends in Cell Biology 18, 443-450, doi:10.1016/j.tcb.2008.07.001 (2008).
23 Abrahamse, H. Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem J 473, 347-364, doi:10.1042/BJ20150942 (2016).
24 Hung, Y. H., Chen, L. M., Yang, J. Y. Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun 4, 2111, doi:10.1038/ncomms3111 (2013).
25 Trewin, A. J. et al. Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 128, 157-164, doi:10.1016/j.freeradbiomed.2018.02.002 (2018).
26 Eşrefoğlu, M. The Golgi Apparatus: Morphology and Function with Recent Facts. Bezmialem Science 7, 331-338, doi:10.14235/bas.galenos.2019.2806 (2019).
27 Glick, B. S. Nakano, A. Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25, 113-132, doi:10.1146/annurev.cellbio.24.110707.175421 (2009).
28 Wei, J.-H. Seemann, J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Current Opinion in Cell Biology 47, 43-51, doi:10.1016/j.ceb.2017.03.008 (2017).
29 Tang, D. et al. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nat Commun 2, 501, doi:10.1038/ncomms1509 (2011).
30 Zhang, X., Zhang, H. Wang, Y. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J Cell Sci 127, 172-181, doi:10.1242/jcs.134668 (2014).
31 Tewari, R., Bachert, C., Linstedt, A. D. Glick, B. S. Induced oligomerization targets Golgi proteins for degradation in lysosomes. Molecular Biology of the Cell 26, 4427-4437, doi:10.1091/mbc.E15-04-0207 (2015).
32 Schmidt, O. et al. Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J 38, e101433, doi:10.15252/embj.2018101433 (2019).
33 Yamaguchi, H. et al. Golgi membrane-associated degradation pathway in yeast and mammals. EMBO J 35, 1991-2007, doi:10.15252/embj.201593191 (2016).
34 Eisenberg-Lerner, A. et al. Golgi organization is regulated by proteasomal degradation. Nat Commun 11, 409, doi:10.1038/s41467-019-14038-9 (2020).
35 Gomes-da-Silva, L. C. et al. Recruitment of LC3 to damaged Golgi apparatus. Cell Death Differ 26, 1467-1484, doi:10.1038/s41418-018-0221-5 (2019).
36 Lu, L. Q. et al. Regulation of the Golgi apparatus via GOLPH3-mediated new selective autophagy. Life Sci 253, 117700, doi:10.1016/j.lfs.2020.117700 (2020).
37 Jin, Y. et al. Nanostructures of an amphiphilic zinc phthalocyanine polymer conjugate for photodynamic therapy of psoriasis. Colloids Surf B Biointerfaces 128, 405-409, doi:10.1016/j.colsurfb.2015.02.038 (2015).
38 England, C. G., Luo, H. Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem 26, 975-986, doi:10.1021/acs.bioconjchem.5b00191 (2015).
39 Teramoto, T. et al. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Nat Commun 4, 1572, doi:10.1038/ncomms2593 (2013).
40 Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418, doi:10.1038/nature10744 (2012).
41 Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C. Ciechanover, A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 79, 403-418, doi:10.1016/j.biocel.2016.07.019 (2016).
42 Karbowski, M., Cleland, M. M. Roelofs, B. A. Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells. Methods Enzymol 547, 57-73, doi:10.1016/B978-0-12-801415-8.00004-7 (2014).
43 Sprague, B. L., Pego, R. L., Stavreva, D. A. McNally, J. G. Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching. Biophysical Journal 86, 3473-3495, doi:10.1529/biophysj.103.026765 (2004).
44 Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7, 12471, doi:10.1038/ncomms12471 (2016).
45 Wild, P., McEwan, D. G. Dikic, I. The LC3 interactome at a glance. Journal of Cell Science 127, 3-9, doi:10.1242/jcs.140426 (2013).
46 Lorenz, H., Hailey, D. W. Lippincott-Schwartz, J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 3, 205-210, doi:10.1038/nmeth857 (2006).
47 Mizushima, N., Yoshimori, T. Levine, B. Methods in Mammalian Autophagy Research. Cell 140, 313-326, doi:10.1016/j.cell.2010.01.028 (2010).
48 Zhou, C. et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8, 1215-1226, doi:10.4161/auto.20284 (2012).
49 Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375, doi:10.1038/nature13418 (2014).
50 Liu, Z. et al. Ubiquitylation of Autophagy Receptor Optineurin by HACE1 Activates Selective Autophagy for Tumor Suppression. Cancer Cell 26, 106-120, doi:10.1016/j.ccr.2014.05.015 (2014).
51 Zhang, L. et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nature Communications 5, doi:10.1038/ncomms4430 (2014).
52 Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32, 2336-2347, doi:10.1038/emboj.2013.171 (2013).
53 Braulke, T. Bonifacino, J. S. Sorting of lysosomal proteins. Biochim Biophys Acta 1793, 605-614, doi:10.1016/j.bbamcr.2008.10.016 (2009).
54 Bonifacino, J. S. Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72, 395-447, doi:10.1146/annurev.biochem.72.121801.161800 (2003).
55 Gomes‐da‐Silva, L. C. et al. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. The EMBO Journal 37, doi:10.15252/embj.201798354 (2018).
56 Zhou, H. et al. The oncolytic compound LTX-401 targets the Golgi apparatus. Cell Death Differentiation 23, 2031-2041, doi:10.1038/cdd.2016.86 (2016).
57 Martell, J. D., Deerinck, T. J., Lam, S. S., Ellisman, M. H. Ting, A. Y. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 12, 1792-1816, doi:10.1038/nprot.2017.065 (2017).
58 Saito, T. et al. An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. Journal of Clinical Investigation 129, 802-819, doi:10.1172/jci122035 (2019).
59 Köchl, R., Hu, X. W., Chan, E. Y. W. Tooze, S. A. Microtubules Facilitate Autophagosome Formation and Fusion of Autophagosomes with Endosomes. Traffic 7, 129-145, doi:10.1111/j.1600-0854.2005.00368.x (2006).
60 Choi, H. S. et al. Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells. Tuberculosis and Respiratory Diseases 75, 9, doi:10.4046/trd.2013.75.1.9 (2013).
61 Lim, J. et al. Nigericin-induced Impairment of Autophagic Flux in Neuronal Cells Is Inhibited by Overexpression of Bak. Journal of Biological Chemistry 287, 23271-23282, doi:10.1074/jbc.M112.364281 (2012).
62 Erales, J. Coffino, P. Ubiquitin-independent proteasomal degradation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1843, 216-221, doi:10.1016/j.bbamcr.2013.05.008 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77119-
dc.description.abstract細胞通過自噬去除受損的胞器。然而,通過高基氏體自噬引發的蛋白質降解仍是有爭議的議題。在本篇研究,我們建立了兩種不同的方法可獲得高基氏體自噬證據。一是使用光主動誘導高基氏體損傷,另一種是無損傷方式應用高基氏體蛋白轉染並長時間觀察。
在主動損傷高基氏體的策略中,我們用化學和遺傳學方式。將具高基氏體專一性的光敏劑結合光照以觸發活性氧的產生,可實現高基氏體損傷。此外,雷射可達成破壞細胞中的小部分之高基氏體,發光二極管照射則可破壞全部的高基氏體。 我們偵測到受損高基氏體可吸引自噬轉接蛋白p62,泛素和自噬標記蛋白LC3聚集。還證實了LC3顆粒中含有成熟的自噬小體圍繞著高基氏體碎片。ATG4B、LC3點突變和ATG5的基因抑制消除了自噬小體的形成。長時間顯微鏡觀察下,高基氏體被自噬小體吞噬並進入溶酶體,並通過SNARE蛋白STX17調控降解,而氨基酸剔除可加速降解。我們還發現E3連接酶HACE1可能調控受損高基氏體泛素化。結論是,我們發現損壞之高基氏體降解可通過細胞自噬機制調控。
在被動非破壞方法中,我們用基因轉染方法在細胞表現高基氏體蛋白,並長期培養後觀察到大量高基氏體顆粒在細胞質積累。出乎意料的是,我們發現大多數高基氏體與LC3顆粒共定位,但此現象並未在LC3點突變或是ATG16L1敲除細胞中被觀察到。此外,高爾基顆粒也與LAMP1共定位,並具溶酶體特性。敲弱自噬基因導致高基氏體蛋白含量上升,並形成破碎小型的高基氏體。而ATG5基因敲除之小鼠胚胎成纖維細胞也顯示異常高基氏體形態。敲弱STX17導致高基氏體膨脹堆積和尺寸擴大。以上結果可證明,我們可能發現了一個新穎的運輸過程,高基氏體到溶酶體的蛋白質的運輸途徑是由細胞自噬機制所調節。
zh_TW
dc.description.abstractCells remove damaged organelles through autophagy. However, Golgi apparatus (GA) degradation via autophagy (Golgiphagy) is controversy. Here we have established two different schemes to get the evidences for Golgiphagy. One used light actively induced GA damage and another applied transfection of GA proteins without damage to observe passively.
In active damage GA therapy, we used chemical and genetically Golgi-localized photosensitizers respectively light illumination to trigger reactive oxygen species production and it can be achieved specific GA impairment. Besides, laser bleached small fractions of GA in single cell and LED illuminated global organelles on whole cells. After GA impairment, we detected autophagy adaptors p62、ubiquitin and autophagosome marker LC3B on injured GA. It was also confirmed LC3 punta contained mature autophagosome which were surrounding debris of GA. Overexpression of ATG4B、LC3 mutant and knockdown of ATG5 abolished autophagosome formation. Long-term time lapse imaging showed that the autophagosome-engulfed GA entered into lysosome for degradation by SNARE protein STX17 mediation and EBSS starvation accelerated degradation process. We also found E3 ligase HACE1 could mediate damaged GA ubiquitination. According to the results, damage GA degradation is regulated by autophagy.
In passive non-damage method, we also used genetically Golgi-localized proteins and observed a large number Golgi punta accumulated in cytosol in long-term incubation. Surprisingly, we found most Golgi punta co-localized with wild-type LC3 but not in mutant and the phenomenon was inhibited in ATG16L1 knockout cell line. Furthermore, most Golgi punta also co-localized with LAMP1 and was characterized as lysosome. Knockdown of autophagic genes caused GA protein levels were increased and it was fragmented to form mini-Golgi stacks in cytosol and ATG5-/- MEFs also showed abnormal GA morphology. Knockdown of STX17 led to more Golgi punta accumulation and size expansion. These results can be demonstrated a novel Golgi to lysosome trafficking pathway for protein turnover is regulated by autophagy.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:47:22Z (GMT). No. of bitstreams: 1
U0001-0102202116490300.pdf: 37276317 bytes, checksum: 710229c3fe4b3bd3234ce546e96e3999 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsPreface i
摘要 ii
Abstracts iii
I. Introduction 1
I.1 Autophagy 1
I.2 Organelle autophagy 2
I.3 Golgi Apparatus 5
I.4 Golgi quality control 6
II. Results 8
II.1 Establish a scheme to impair Golgi apparatus specifically 8
II.2 Golgi impairment attracts autophagic regulators recruitment 9
II.3 Super-resolution analysis reveals ubiquitination on trans-Golgi 11
II.4 Golgi damage induces autophagosome formation 12
II.5 Autophagy inhibitions attenuate autophagosome formation 13
II.6 Autophagosome engulfs impaired Golgi for lysosomal degradation 14
II.7 Syntaxin17 regulates lysosomal fusion in Golgiphgy 16
II.8 Knockdown of HACE1 could inhibit Golgiphagy 17
II.9 Overexpression of Golgi proteins triggers lysosomal transport 18
II. 10 Autophagy related proteins mediate Golgi to lysosome trafficking 19
II. 11Autophagy inhibition results in fragmentation or accumulation. 20
III. Discussion 22
IV. Materials and Methods 26
IV.1 Cell culture、DNA Transfection and RNA interference 26
IV.2 Golgi apparatus fluorescence labeling 26
IV.3 Induce specific impairment of Golgi apparatus by light 27
IV.4 Immnuofluorescene staining 28
IV.5 SDS-PAGE and western blotting 29
IV.6 Fluorescence protease protection assay 30
IV.7 Sample preparing of transmission electron microscopy 30
IV.8 Super-resolution analysis and imaging statistic 31
V. Figures 32
VI. Supplementary data 57
VII. References 65
dc.language.isoen
dc.subject高基氏體zh_TW
dc.subject細胞自噬zh_TW
dc.subject高基氏體自噬zh_TW
dc.subject蛋白質降解zh_TW
dc.subject光zh_TW
dc.subjectprotein degradationen
dc.subjectlighten
dc.subjectGolgi apparatusen
dc.subjectGolgiphagyen
dc.subjectautophagyen
dc.title⾼基⽒體蛋⽩降解經由細胞⾃噬調控zh_TW
dc.titleGolgi proteins degradation are mediated by
Golgiphagy
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),姚季光(Chi-Kuang Yao),許家維(Jia-Wei Hsu),魏妊亘(Jen-Hsuan Wei)
dc.subject.keyword細胞自噬,高基氏體,高基氏體自噬,蛋白質降解,光,zh_TW
dc.subject.keywordautophagy,Golgi apparatus,Golgiphagy,protein degradation,light,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202100336
dc.rights.note未授權
dc.date.accepted2021-02-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
U0001-0102202116490300.pdf
  未授權公開取用
36.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved