請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77114
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李達源 | |
dc.contributor.author | Yi-Jie Liao | en |
dc.contributor.author | 廖儀潔 | zh_TW |
dc.date.accessioned | 2021-07-10T21:47:11Z | - |
dc.date.available | 2021-07-10T21:47:11Z | - |
dc.date.copyright | 2020-02-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-18 | |
dc.identifier.citation | 中央地質調查所。2007。砷鉛鐵礬礦不應是導致北投溪及關渡平原砷含量高的元凶。經濟部。
中國食品安全國家標準。2012。食品中污染物限量(GB 2762)。 毛壬杰、黃瑞彰。2016。雲嘉南蔬菜生產區之蔬菜重金屬含量之安全性評估。臺南區農業改良場研究彙報67:49-61。 行政院農業委員會。2017。106年農業統計要覽。 行政院環保署環境檢驗所。2002。土壤水分含量測定方法—重量法(NIEA S280.61C)。 行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法—王水消化法(NIEA S321.63B)。 范淑貞、張粲如、李聯興。1996。蕹菜新品種「桃園一號」之選育。桃園農改場研究報告24。 張尊國、張文亮、黃文達、徐貴新、黃政恆、林景行、林聖淇。2007。台北市農地土壤重金屬含量調查及查證計畫。台北市政府環境保護局。 畢如蓮。1995。台灣嘉南平原地下水砷生成途徑與地質環境之初步探討。國立台灣大學地質學研究所碩士論文。 許正一。2011。土壤重金屬知多少。科學發展 468:54-59。 許健輝。2014。水稻品種及根部鐵膜對關渡平原土壤中植體砷累積及砷物種影響。 國立台灣大學農業化學所博士論文。 陳建仁。2004。從台灣的砷經驗,展望世界未來。科學人9月號。 劉政道、林麗玉。1995。蔬菜類蕹菜。台灣農家要覽 第三版:403-408。 劉振宇。2009。淺論台灣地區含砷地下水水質特徵及其釋出機制。社團法人台灣土壤及地下水環境保護協會 31。 環保署。2011。土壤汙染管制標準。行政院環境保護署。 Augustsson, A., T. Uddh Soderberg, M. Filipsson, I. Helmfrid, M. Berglund, H. Karlsson, and S. Alriksson. 2018. Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments. Environment International. 113: 269-280. Bergqvist, C., and M. Greger. 2012. Arsenic accumulation and speciation in plants from different habitats. Applied geochemistry. 27:615-622. Bhatti, S., C. Anderson, R. Stewart, and B. Robinson. 2013. Risk assessment of vegetables irrigated with arsenic contaminated water. Environmental Science: Processes and Impacts. 15:1866-1875. Bhumbla, D. 1994. Aresnic mobilization and bioavailability in soils. Arsenic in the environment. Part I: Cycling and Characterization. 51-82. Bolan, N., S. Mahimairaja, A. Kunhikrishnan, and G. Choppala. 2013. Phosphorus arsenic interactions in variable charge soils in relation to arsenic mobility and bioavailability. Science of the Total Environment. 463:1154-1162. Bray, R. H., and L. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science. 59:39-46. Cao, X., and L. Q. Ma. 2004. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution. 132:435-442. Chen, C., J. Dixon, and F. Turner. 1980. Iron coatings on rice roots: morphology and models of development 1. Soil Science Society of America Journal. 44:1113-1119. Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis 1. Methods of soil analysis. Part 1. Physical and Mineralogical Methods. 383-411. Geng, C. N., Y. G. Zhu, W. J. Liu, and S. E. Smith. 2005. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany. 83:321-331. Grifoni, M., M. Schiavon, B. Pezzarossa, G. Petruzzelli, and M. Malagoli. 2015. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. Environmental Science and Pollution Research. 22:2423-2433. Guo, W., J. Zhang, M. Teng, and L. H. Wang. 2009. Arsenic uptake is suppressed in a rice mutant defective in silicon uptake. Plant Nutrition and Soil Science. 172:867-874. Guo, W., Y. G. Zhu, W. J. Liu, Y. C. Liang, C. N. Geng, and S. G. Wang. 2007. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environmental Pollution. 148:251-257. Hansel, C. M., S. Fendorf, S. Sutton, and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine waste impacted aquatic plants. Environmental Science and Technology. 35:3863-3868. Hedegaard, R. V., and J. J. Sloth. 2011. Speciation of arsenic and mercury in feed: why and how? Biotechnologie, Agronomie, Société et Environnement. 15:45-51. Hillel, D. 1980. Applications of soil physics. Academic Press, New York. Hingston, F., A. Posner, and J. Quirk. 1971. Competitive adsorption of negatively charged ligands on oxide surfaces. Discussions of the Faraday Society. 52:334-342. Hurd Karrer, A. M. 1939. Antagonism of certain elements essential to plants toward chemically related toxic elements. Plant Physiology. 14:9. Jacobs, L., and D. Keeney. 1970. Arsenic‐phosphorus interactions on corn. Communications in Soil Science and Plant Analysis. 1:85-93. Kaur, S., N. Kaur, K. H. Siddique, and H. Nayyar. 2016. Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Archives of Agronomy and Soil Science. 62:905-920. Lee, C. H., H. H. Huang, C. H. Syu, T. H. Lin, and D. Y. Lee. 2014. Increase of As release and phytotoxicity to rice seedlings in As contaminated paddy soils by Si fertilizer application. Hazardous Materials. 276:253-261. Lee, C. H., C. H. Wu, C. H. Syu, P. Y. Jiang, C. C. Huang, and D. Y. Lee. 2016. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As contaminated paddy soils. Geoderma. 270:60-67. Liu, W., Y. Zhu, F. Smith, and S. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Experimental Botany. 55:1707-1713. Lou, L., Z. Ye, A. Lin, and M. H. Wong. 2010. Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern. Phytoremediation. 12:487-502. Luxton, T. P., M. J. Eick, and D. J. Rimstidt. 2008. The role of silicate in the adsorption/desorption of arsenite on goethite. Chemical Geology. 252:125-135. Ma, L., Z. Yang, Q. Kong, and L. Wang. 2017. Extraction and determination of arsenic species in leafy vegetables: method development and application. Food Chemistry. 524-530. Mandal, B. K., and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta. 58: 201-235. Masscheleyn, P. H., R. D. Delaune, and W. H. Patrick Jr. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology. 25:1414-1419. Mayorga, P., A. Moyano, H. M. Anawar, and A. Garcia Sanchez. 2013. Uptake and accumulation of arsenic in different organs of carrot irrigated with As rich water. CLEAN–Soil, Air, Water. 41:587-592. Mazumder, D., J. D. Gupta, A. Chakraborty, A. Chatterjee, D. Das, and D. Chakraborti. 1992. Environmental pollution and chronic arsenicosis in south Calcutta. World Health Organization. 70:481. McKeague, J., and J. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Soil Science. 46:13-22. McLean, E. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and Microbiological Properties. 199-224. Meharg, A., and M. Macnair. 1992. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. Experimental Botany. 43:519-524. Meharg, A. A., and M. R. Macnair. 1994. Relationship between plant phosphorus status and the kinetics of arsenate influx in clones of deschampsia cespitosa (L.) beauv. that differ in their tolerance to arsenate. Plant and Soil. 162:99-106. Meharg, A. A., and M. M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science and Technology. 37:229-234. Mehra, O., and M. Jackson. 2013. Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate clays and clay minerals. Elsevier. 317-327. Nelson, D., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Chemical and Microbiological Properties. 539-579. World Health Organization. 2011. Evaluation of certain food additives and contaminants. World Health Organization technical report series. World Health Organization. 2012. Guidelines for drinking water quality fourth edition. Pais, I., and J. B. Jones Jr. 1997. The handbook of trace elements: CRC Press. Raven, K. P., A. Jain, and R. H. Loeppert. 1998. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology. 32:344-349. Shacklette, H. T., and J. G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. Shahid, M., M. Rafiq, N. K. Niazi, C. Dumat, S. Shamshad, S. Khalid, and I. Bibi. 2017. Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environmental Science and Pollution Research. 24:16097-16106. Smedley, P. L., and D. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry. 17:517-568. Takahashi, Y., R. Minamikawa, K. H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science and Technology. 38:1038-1044. Tang, X., M. P. Lim, and M. B. McBride. 2018. Arsenic uptake by arugula (Eruca vesicaria, L.) cultivars as affected by phosphate availability. Chemosphere. 195: 559-566. Tripathi, R. D., S. Srivastava, S. Mishra, N. Singh, R. Tuli, D. K. Gupta, and F. J. Maathuis. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology. 25:158-165. Tu, S., and L. Ma. 2003. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany. 50:243-251. Ultra Jr, V. U., A. Nakayama, S. Tanaka, Y. Kang, K. Sakurai, and K. Iwasaki. 2009. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments. Soil Science and Plant Nutrition. 55:160-169. Wang, J., F. J. Zhao, A. A. Meharg, A. Raab, J. Feldmann, and S. P. McGrath. 2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata.: uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology. 130:1552-1561. Wei, F., J. Chen, Y. Wu, and C. Zheng. 1991. Study on the background contents on 61 elements of soils in China. Chin. J. Environ. Sci. 12:12-19. Whitacre, D. M. 2009. Reviews of environmental contamination and toxicology. Springer. Woolson, E. 1975. Bioaccumulation of arsenicals. ACS Symp. Ser. Xu, G., X. Zhan, C. Li, S. Bao, X. Liu, and T. Chu. 2001. Assessing methods of available silicon in calcareous soils. Soil Science and Plant Analysis. 32:787-801. Xu, X., S. McGrath, A. Meharg, and F. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology. 42: 5574-5579. Zama, E. F., B. J. Reid, G. X. Sun, H. Y. Yuan, X. M. Li, and Y. G. Zhu. 2018. Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Cleaner Production. 189:386-395. Zhou, X. B., W. M. Shi, and L. H. Zhang. 2007. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture. Plant and Soil, 290:17-28. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77114 | - |
dc.description.abstract | 蕹菜是亞洲地區常見的蔬菜,可以利用水生及旱作兩種栽培方式,而砷(Arsenic, As)是環境中危險的致癌物質,在水生栽培(還原條件)下土壤有效砷濃度高,且主要砷物種為毒性較高的亞砷酸鹽(iAsⅢ),故當蕹菜種植在兩種不同栽培方式下,植體中的總砷濃度及砷物種可能也會有差異,並造成不同的健康風險。因此本研究的目的為比較旱作栽培(U)與水生栽培(F)對蕹菜砷累積及砷物種分佈。本研究所採集的土壤為關渡(Gd)和民雄(Ms)兩地區,土壤質地分別為黏土和壤土,另外關渡土壤的總砷濃度為18.4 mg kg-1 (GdL)和103.3 mg kg-1 (GdH),而民雄土壤的總砷濃度為22.9 mg kg-1 (MsL)和72.1 mg kg-1 (MsH),草酸銨萃取砷濃度則依序為:GdH> MsL> MsH> GdL,以上四種土壤會分別進行旱作(田間容水量)或水生(土表以上淹水3公分)兩種栽培方式。結果顯示,水生及旱作栽培下,蕹菜地上部皆只有檢測到無機型態的三價砷(iAsⅢ及)五價砷(iAsV),且以iAsⅢ為主,同時也發現蕹菜地上部的iAsⅢ濃度與孔隙水有顯著相關(p<0.001)。在水生栽培下,因為土壤中鐵氧化物會溶解並釋放被固定的砷,增加土壤孔隙水中總砷及iAsⅢ濃度,進而導致地上部的總砷及iAsⅢ濃度皆高於旱作栽培,故相較於旱作蕹菜,食用水生蕹菜的風險較高。此外,除了水分管理,土壤的質地及被無定型鐵氧化物固定的砷含量也會影響砷在土壤的溶解度及移動性造成影響。綜合本研究結果,蕹菜利用旱作栽培,並種植於壤土且孔隙水砷濃度低的環境下,可以有效降低食用部位iAsⅢ濃度,進而降低其食用風險。 | zh_TW |
dc.description.abstract | Water spinach is the popular vegetable in Asia area, and it can be planted in both flooding and upland conditions. Arsenic (As) is considered as one of the most dangerous carcinogens in natural environment. In the flooding (reducing) condition , the available As in the soil is higher and the dominant species is arsenite (iAsⅢ), which is the most toxic As species, thus there were differences in As accumulation and major As species in plants between two water managements, and further leading to the different health risk to human. Therefore, the objective of the present study was to compare the As speciation and As accumulation in water spinach in soils under flooding (F) and upland (U) conditions. In this study, two tested soils collected from Guandu (Gd) and Minsyong (Ms), which were clay and loam, respectively. The concentration of As in Gd soils are 18.4 mg kg−1(GdL) and 103.3 mg kg−1 (GdH), and those in Ms are 22.9 mg kg−1(MsL) and 72.1 mg kg−1 (MsH). Besides, the order of the concentration of ammonium oxalate extractable As is GdH> MsL> MsH> GdL All tested soils were conducted in upland (field capacity) and flooding (3 cm above the soil surface) treatments in this study for planting water spinach. The results showed that the inorganic As including iAsIII and iAsV were detected in the water spinach, and iAsⅢ was the dominant species in root and shoot under upland and flooding conditions. It was also found that there was significant correlation between the concentrations of iAsIII in shoot of water spinach and those in soil pore water (p<0.001). Under flooding treatment, the increase of total As and iAsIII concentrations in pore water through the reduction dissolution of iron oxides, which results in the concentrations of total As and iAsIII in shoot were higher than upland treatment. Therefore, the dietary risk of water spinach planted in flooding soil was higher than upland soil. In addition, the solubility and mobility of As in soils was not only affected by water management but also affected by the texture and the contents of DCB-As of soils. In summary, it suggests that the concentrations of iAsIII in edible part of water spinach and dietary risk can be decreased while it planted in upland loamy soils with low As in soil pore water. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:47:11Z (GMT). No. of bitstreams: 1 ntu-109-R06623036-1.pdf: 2990898 bytes, checksum: 41684d9107c24ee6d46f93ad9444fd23 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章、緒論 1 1.1蕹菜 1 1.2砷的污染來源 3 1.3砷的化學型態 6 1.4砷對人體毒害 10 1.5影響植體中砷累積之因子 12 1.5.1磷對植體砷累積之影響 12 1.5.2矽對植體砷累積之影響 15 1.5.3鐵膜對植體砷累積之影響 16 1.5.4硫醇對砷之固定 17 1.5.5水分管理對植體砷累積影響 18 1.6蔬菜中砷累積及砷物種情形 21 1.7研究動機及目的 23 第二章、材料與方法 24 2.1土壤採集 24 2.2土壤基本性質測定 24 2.3蕹菜盆栽試驗 27 2.4試驗期間土壤監測及試驗後土壤分析 29 2.5採收後植體保存與分析 30 2.6食用蕹菜之每日砷攝入量估計 31 2.7儀器參數設置 32 2.8統計分析 35 第三章、結果與討論 36 3.1試驗土壤基本性質 36 3.2蕹菜盆栽試驗期間土壤監測 39 3.2.1試驗期間土壤pH及Eh變化 39 3.2.2水生及旱作栽培對土壤孔隙水鐵濃度之影響 43 3.2.3水生及旱作栽培對土壤孔隙水中砷濃度及砷物種影響 46 3.2.3.1水生及旱作栽培對土壤孔隙水中砷濃度影響 46 3.2.3.2水生及旱作栽培對土壤孔隙水砷物種的影響 50 3.3水生及旱作栽培對蕹菜之影響 53 3.3.1水生及旱作栽培對蕹菜生質量之影響 53 3.3.2水生及旱作栽培對蕹菜植體中砷濃度之影響 56 3.3.3水生及旱作栽培對蕹菜植體中砷物種之影響 64 3.4其他影響蕹菜砷累積量之因子 72 3.4.1鐵膜對蕹菜根部吸收砷之影響 72 3.4.1磷對蕹菜砷累積量之影響 80 3.4.2矽對蕹菜砷累積量之影響 83 3.5食用蕹菜對人類健康之影響 87 第四章、結論 91 第五章、參考文獻 92 第六章、附錄 100 | |
dc.language.iso | zh-TW | |
dc.title | 比較水生與旱作栽培下蕹菜(Ipomoea aquatica Forssk.)的砷累積及砷物種分佈 | zh_TW |
dc.title | Comparison of the Arsenic Accumulation and Speciation in Water Spinach (Ipomoea aquatica Forssk.) in Flooding and Upland Soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王尚禮,鄒裕民,莊愷瑋,許健輝 | |
dc.subject.keyword | 蔬菜,旱作,水分管理,砷物種,砷, | zh_TW |
dc.subject.keyword | Vegetable,Upland condition,Water management,Arsenic speciation,Arsenic, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU202000508 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-02-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-R06623036-1.pdf 目前未授權公開取用 | 2.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。