Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美
dc.contributor.authorJhih-Ci Yangen
dc.contributor.author楊之綺zh_TW
dc.date.accessioned2021-07-10T21:47:00Z-
dc.date.available2021-07-10T21:47:00Z-
dc.date.copyright2020-03-02
dc.date.issued2020
dc.date.submitted2020-02-26
dc.identifier.citation王淑雯。2008。韌化作用對酸醇處理玉米澱粉之抗性澱粉含量的影響。靜宜大學食品營養研究所碩士論文。台中沙鹿,台灣。
吳宥萱。2018。TEMPO 觸媒氧化澱粉與 pH 應答型微凝膠之製備及物化性質。國立臺灣大學生物資源暨農學院農業化學系,碩士論文。台北,台灣。
郭魁士。1997。土壤學。中國書局。台北,台灣。
Akpomie, K. G., & Dawodu, F. A. (2014). Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkaline-modified montmorillonite. Journal of Taibah University for Science, 8(4), 343-356.
Arvanitoyannis, I. S. (1999). Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. Journal of Macromolecular Science Part C Polymer Review, 39(2), 205–271.
Balicka-Ramisz, A., Wojtasz-Pajak, A., Pilarczyk, B., Ramisz, A., & Laurans, L. (2005). Antibacterial and antifungal activity of chitosan. ISAH, 2, 406-408.
Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61-71.
Bergaya, F., & Lagaly, G. (2013). Handbook of clay science (Vol. 5): Elsevier, Amsterdam, The Netherlands.
Bharadwaj, R., Mehrabi, A., Hamilton, C., Trujillo, C., Murga, M., Fan, R., Chavira, A., Thompson, A. (2002). Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer, 43(13), 3699-3705.
Blott, S. J., & Pye, K. (2006). Particle size distribution analysis of sand‐sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology, 53(3), 671-685.
Blumstein, A. (1965). Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. Journal of Polymer Science Part A: General Papers, 3(7), 2665-2672.
Branca, C., D'Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., & Wanderlingh, U. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer, 99, 614-622.
Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-112.
Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries− In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36.
Carr Jr, M. E., Shen, L. L., & Hermans, J. (1977). Mass–length ratio of fibrin fibers from gel permeation and light scattering. Biopolymers: Original Research on Biomolecules, 16(1), 1-15.
Carrado, K., Decarreau, A., Petit, S., Bergaya, F., & Lagaly, G. (2006). Synthetic clay minerals and purification of natural clays. Developments in Clay Science, 1, 115-139.
Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
Chang, P.-S., & Cho, G.-B. (1997). Oxidation of primary alcohol groups of polysaccharides with 2, 2, 6, 6-tetramethyl-1-piperidine oxoammonium ion. Korean Journal of Food Science and Technology, 29(3), 446-451.
Chang, P., Park, K., Shin, H., Suh, D., & Kim, K. (2008). Physicochemical properties of partially oxidized corn starch from bromide‐free TEMPO‐mediated reaction. Journal of Food Science, 73(3), C173-C178.
Chang, P. R., Jian, R., Zheng, P., Yu, J., & Ma, X. (2010). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301-305.
Chung, Y.-L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P., & Lai, H.-M. (2010). Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 79(2), 391-396.
Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer− clay nanocomposites based on chitosan intercalated in montmorillonite. Chemistry of Materials, 15(20), 3774-3780.
De Nooy, A., Besemer, A., & Van Bekkum, H. (1994). Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recueil des Travaux Chimiques des Pays‐Bas, 113(3), 165-166.
Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 64(3), 452-465.
El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreno, N. L. V., . . . da Rosa Zavareze, E. (2015a). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644-653.
El Halal, S. L. M., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., . . . da Rosa Zavareze, E. (2015b). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247-256.
Fang, J., Fowler, P., Tomkinson, J., & Hill, C. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245-252.
Farley, F., & Hixon, R. (1942). Oxidation of raw starch granules by electrolysis in alkaline sodium chloride solution. Industrial & Engineering Chemistry, 34(6), 677-681.
Fornes, T., Yoon, P., Keskkula, H., & Paul, D. R. (2001). Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 42(25), 09929-09940.
Forssell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour, of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34(4), 275-282.
Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T., & Isogai, A. J. C. P. (2011). Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers, 84(1), 579-583.
George, E., Sullivan, T., & Park, E. (1994). Thermoplastic starch blends with a poly (ethylene‐co‐vinyl alcohol): processability and physical properties. Polymer Engineering & Science, 34(1), 17-23.
Giri, P., Tambe, C., & Narayan, R. (2018). Using Reactive Extrusion To Manufacture Greener Products: From Laboratory Fundamentals to Commercial Scale. In Biomass Extrusion and Reaction Technologies: Principles to Practices and Future Potential (pp. 1-23): American Chemical Society, Washington, DC.
Goesaert, H., Brijs, K., Veraverbeke, W., Courtin, C., Gebruers, K., & Delcour, J. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology, 16(1-3), 12-30.
Gong, Z., Liao, L., Lv, G., & Wang, X. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294-300.
Gumul, D., Krystyjan, M., Buksa, K., Ziobro, R., & Zięba, T. (2014). The influence of oxidation, extrusion and oxidation/extrusion on physico‐chemical properties of potato starch. Starch‐Stärke, 66(1-2), 190-198.
Hai, L. V., Zhai, L., Kim, J. W., Choi, E. & Kim, J. (2017). Properties of TEMPO-oxidized cellulose nanofiber by using aqueous counter collision. Proceedings of SPIE, 10167, 10167G.
Han, J. H. (2003). Antimicrobial food packaging. Novel Food Packaging Techniques, 8, 50-70.
Hu, G., Chen, J., & Gao, J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76(2), 291-298.
Jamróz, E., Juszczak, L., & Kucharek, M. (2018). Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. International Journal of Biological Macromolecules, 114, 1094-1101.
Jane, J. L., Kasemsuwan, T., Leas, S., Zobel, H., & Robyt, J. F. (1994). Anthology of starch granule morphology by scanning electron microscopy. Starch‐Stärke, 46(4), 121-129.
Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058-2076.
Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918.
Kowalczyk, D., Kordowska-Wiater, M., Nowak, J., & Baraniak, B. (2015). Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. International Journal of Biological Macromolecules, 77, 350-359.
Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch‐Stärke, 53(5), 211-218.
Kuakpetoon, D., & Wang, Y.-J. (2006). Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate research, 341(11), 1896-1915.
Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.
Lavorgna, M., Piscitelli, F., Mangiacapra, P., & Buonocore, G. G. (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers, 82(2), 291-298.
LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2), 11-29.
Lee, S.-R., Park, H.-M., Lim, H., Kang, T., Li, X., Cho, W.-J., & Ha, C.-S. (2002). Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer, 43(8), 2495-2500.
Liu, D., Wei, Y., Yao, P., & Jiang, L. (2006). Determination of the degree of acetylation of chitosan by UV spectrophotometry using dual standards. Carbohydrate research, 341(6), 782-785.
Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45-52.
Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., de Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate Polymers, 102, 576-583.
Mahanta, C. L., Ali, S., Bhattacharya, K., & Mukherjee, P. (1989). Nature of starch crystallinity in parboiled rice. Starch‐Stärke, 41(5), 171-176.
Majdzadeh-Ardakani, K., Navarchian, A. H., & Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydrate Polymers, 79(3), 547-554.
Makanjuola, O. M. & Makanjuola, J. O. (2018). Evaluation of functional and pasting properties of different corn starch flours. International Journal of Food Science and Nutrition, 3(6), 95-99
Mathew, S., Snigdha, S., Mathew, J., & Radhakrishnan, E. (2018). Poly (vinyl alcohol): Montmorillonite: Boiled rice water (starch) blend film reinforced with silver nanoparticles; characterization and antibacterial properties. Applied Clay Science, 161, 464-473.
Meira, S. M. M., Zehetmeyer, G., Werner, J. O., & Brandelli, A. (2017). A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocolloids, 63, 561-570.
Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019). Structural and thermal properties of agricultural mulch films based on native and oxidized corn starch nanocomposites. Starch‐Stärke, 71(7-8), 1800341.
Merino, D., Gutiérrez, T. J., Mansilla, A. Y., Casalongué, C. A., & Alvarez, V. A. (2018). Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: Study on their interactions with water and light. ACS Sustainable Chemistry & Engineering, 6(11), 15662-15672.
Moreno, O., Cárdenas, J., Atarés, L., & Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178, 147-158.
Nielsen, L. E. (1967). Models for the permeability of filled polymer systems. Journal of Macromolecular Science—Chemistry, 1(5), 929-942.
Osman, M. A., Mittal, V., & Lusti, H. R. (2004). The aspect ratio and gas permeation in polymer‐layered silicate nanocomposites. Macromolecular Rapid Communications, 25(12), 1145-1149.
Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296-303.
Park, H.-M., Lee, W.-K., Park, C.-Y., Cho, W.-J., & Ha, C.-S. (2003). Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. Journal of Materials Science, 38(5), 909-915.
Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (2004). Handbook of industrial mixing: science and practice: John Wiley & Sons, Inc., Hoboken, New Jersey.
Pavlidou, S., & Papaspyrides, C. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198.
Pearson, F., Marchessault, R., & Liang, C. (1960). Infrared spectra of crystalline polysaccharides. V. Chitin. Journal of Polymer Science, 43(141), 101-116.
Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni, A. (2003). Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering, 59(1), 25-32.
Ratnayake, W. S., & Jackson, D. S. (2008). Starch gelatinization. Advances in Food and Nutrition Research, 55, 221-268.
Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Materials Science, 50(8), 962-1079.
Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641.
Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86(2), 691-699.
Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60(2), 235-244.
Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M., & Isogai, A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6), 1687-1691.
Schneider, M., & Neesse, T. (2004). Overflow-control system for a hydrocyclone battery. International Journal of Mineral Processing, 74, S339-S343.
Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643.
Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84-95.
Strawhecker, K., & Manias, E. (2000). Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chemistry of Materials, 12(10), 2943-2949.
Sudarshan, N., Hoover, D., & Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnology, 6(3), 257-272.
Sun, Q., Fan, H., & Xiong, L. (2014). Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers, 106, 359-364.
Tanaka, R., Saito, T., & Isogai, A. (2012). Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules, 51(3), 228-234.
Tang, X., Alavi, S., & Herald, T. J. (2008). Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74(3), 552-558.
Thuc, C.-N. H., Grillet, A.-C., Reinert, L., Ohashi, F., Thuc, H. H., & Duclaux, L. (2010). Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Applied Clay Science, 49(3), 229-238.
Tian, H., Wang, K., Liu, D., Yan, J., Xiang, A., & Rajulu, A. V. (2017). Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. International Journal of Biological Macromolecules, 101, 314-320.
Tolvanen, P., Mäki-Arvela, P., Sorokin, A., Salmi, T., & Murzin, D. Y. (2009). Kinetics of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst. Chemical Engineering Journal, 154(1-3), 52-59.
Ubowska, A. (2010). Montmorillonite as a polyurethane foams flame retardant. Archivum Combustionis, 30(4), 459-462.
Vaia, R. A., & Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules, 30(25), 8000-8009.
van den Broek, L. A., Knoop, R. J., Kappen, F. H., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237-242.
Vanier, N. L., da Rosa Zavareze, E., Pinto, V. Z., Klein, B., Botelho, F. T., Dias, A. R. G., & Elias, M. C. (2012). Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry, 131(4), 1255-1262.
Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263.
Vilar, M. A. (2017). Starch-based materials in food packaging: processing, characterization and applications: Academic Press, London, UK.
Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769.
Vogt, C., Lauterjung, J. r., & Fischer, R. X. (2002). Investigation of the clay fraction (< 2 μm) of the clay minerals society reference clays. Clays and Clay Minerals, 50(3), 388-400.
Wang, P., Sheng, F., Tang, S. W., ud‐Din, Z., Chen, L., Nawaz, A., Hu, C., Xiong, H. (2019). Synthesis and characterization of corn starch crosslinked with oxidized sucrose. Starch‐Stärke, 71(5-6), 1800152.
Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food & Function, 4(11), 1564-1580.
Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568-585.
Wang, Y.-J., & Wang, L. (2003). Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 52(3), 207-217.
Weber, C., Heuser, M., Stanjek, H., & Warr, L. (2014). A collection of aspect ratios of common clay minerals determined from conductometric titrations. Clay Minerals, 49(3), 495-498.
Wu, C.-N., & Lai, H.-M. (2019). Novel pH-responsive granules with tunable volumes from oxidized corn starches. Carbohydrate Polymers, 208, 201-212.
Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., Xia, R., Zhang, Z., Shen, G. & Liu, Y. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208.
Wurzburg, O. B. (1986). Modified starches: Properties and uses.: CRC Press Inc., Boca Raton, Florida
Xiao, F. L., Yun, L. G., Dong, Z. Y., Zhi, L., & Kang, D. Y. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335.
Xiaofei, M., Jiugao, Y., & Jin, F. (2004). Urea and formamide as a mixed plasticizer for thermoplastic starch. Polymer International, 53(11), 1780-1785.
Xu, R., Manias, E., Snyder, A. J., & Runt, J. (2001). New biomedical poly (urethane urea)− layered silicate nanocomposites. Macromolecules, 34(2), 337-339.
Xu, Y., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: preparation and characterization. Industrial Crops and Products, 21(2), 185-192.
Yang, S., Ren, X., Zhao, G., Shi, W., Montavon, G., Grambow, B., & Wang, X. (2015). Competitive sorption and selective sequence of Cu (II) and Ni (II) on montmorillonite: batch, modeling, EPR and XAS studies. Geochimica et cosmochimica Acta, 166, 129-145.
Yamaguchi, N., Anraku, S., Paineau, E., Safinya, C. R., Davidson, P., Michot, L. J., & Miyamoto, N. (2018). Swelling inhibition of liquid crystalline colloidal montmorillonite and beidellite clays by DNA. Scientific reports, 8(1), 1-13.
Yano, K., Usuki, A., Okada, A., Kurauchi, T., & Kamigaito, O. (1993). Synthesis and properties of polyimide–clay hybrid. Journal of Polymer Science Part A: Polymer Chemistry, 31(10), 2493-2498.
Yu, J., Chang, P. R., & Ma, X. (2010). The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch. Carbohydrate Polymers, 79(2), 296-300.
Zafar, R., Zia, K. M., Tabasum, S., Jabeen, F., Noreen, A., & Zuber, M. (2016). Polysaccharide based bionanocomposites, properties and applications: A review. International Journal of Biological Macromolecules, 92, 1012-1024.
Zamudio‐Flores, P. B., Torres, A. V., Salgado‐Delgado, R., & Bello‐Pérez, L. A. (2010). Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch and modified starch/chitosan blend films. Journal of Applied Polymer Science, 115(2), 991-998.
Zamudio‐Flores, P. B., Vargas‐Torres, A., Pérez‐González, J., Bosquez‐Molina, E., & Bello‐Pérez, L. A. (2006). Films prepared with oxidized banana starch: mechanical and barrier properties. Starch‐Stärke, 58(6), 274-282.
Zavareze, E. d. R., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice-Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat–moisture treated potato starch film. Food Chemistry, 132(1), 344-350.
Zhang, S. D., Zhang, Y. R., Zhu, J., Wang, X. L., Yang, K. K., & Wang, Y. Z. (2007). Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch‐Stärke, 59(6), 258-268.
Zhang, Y.-R., Wang, X.-L., Zhao, G.-M., & Wang, Y.-Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers, 87(4), 2554-2562.
Zhang, Y.-R., Zhang, S.-D., Wang, X.-L., Chen, R.-Y., & Wang, Y.-Z. (2009). Effect of carbonyl content on the properties of thermoplastic oxidized starch. Carbohydrate Polymers, 78(1), 157-161.
Zhao, M., Li, J., Mano, E., Song, Z., Tschaen, D. M., Grabowski, E. J., & Reider, P. J. (1999). Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. The Journal of Organic Chemistry, 64(7), 2564-2566.
Zheng, L.-Y., & Zhu, J.-F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 54(4), 527-530.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77109-
dc.description.abstract本試驗擬以TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)/NaClO/NaClO2氧化系統製備三種不同氧化度(degrees of oxidation, DO),分別為5、10及15%的氧化澱粉(oxidized starch, OS),添加經簡易離心純化及超音波震盪分散之蒙特石(montmorillonite, MMT)懸浮液以製成複合膜。為使其具有抗菌能力,並於成膜溶液中添加幾丁聚醣(chitosan, CS)作為抗菌物質,以鑄模法(casting film method)製備蒙特石-幾丁聚醣-氧化澱粉抗菌複合膜。氧化澱粉物化性質測定結果發現,隨著氧化度的增加,澱粉粒變得較容易膨潤,結晶性、熱焓值以及糊化溫度皆降低,表示天然澱粉(native starch, NS)經過氧化之後,結晶結構受到破壞,並有分子降解的情形發生。蒙特石經過簡易純化後,其純度從87.09%上升至99.55%,表示藉由離心步驟可以得到純度高的蒙特石;將純化後的蒙特石經過超音波處理,可使其平均粒徑從2.77 μm下降到0.99 μm,表示超音波處理可以達到讓蒙特石分散的目的。當以5%氧化度之氧化澱粉製備澱粉膜時,其較天然澱粉膜有較光滑的表面、顯著較高的楊氏模數(Young’s modulus, YM)、透光度(light transmittance)以及較佳的紫外光阻隔性。但隨著氧化度(5-15%)增加,氧化澱粉膜的機械性質以及阻擋紫外光的能力呈下降趨勢,此乃澱粉分子降解程度提高與澱粉分子負電斥力增強,使澱粉鏈排列不緊密所致。蒙特石-氧化澱粉複合膜試驗結果顯示,隨著蒙特石添加量(0-10%)的提高,透光度及水氣滲透性(water vapor permeability, WVP)顯著降低,表示分散在基質中的蒙特石已成功扮演阻隔光線及水氣的角色,機械性質的表現則是以2.5%添加量為最佳條件。蒙特石-幾丁聚醣-氧化澱粉抗菌複合膜的結果顯示,幾丁聚醣可以增加複合膜的紫外光及水氣阻隔性,且透過離子鍵結增強了氧化澱粉膜的YM及抗拉強度(tensile strength, TS),並在蒙特石-幾丁聚醣-天然澱粉抗菌複合膜中表現出對Escherichia coli及Staphylococcus aureus的抗菌活性。zh_TW
dc.description.abstractThree different degrees of oxidation (DO) of 5, 10, and 15% of oxidized starch (OS) were prepared through TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) / NaClO / NaClO2 oxidized system. Montmorillonite (MMT) was purified by simple centrifugation method and dispersed by ultrasonication. MMT suspension was added to the OS film-forming solution to make a composite. Chitosan (CS) was added as an antibacterial substance, and MMT-CS-OS antibacterial composite was prepared by casting film method. The experimental results show that as the DO increased, the starch granules became easier to swell, and the crystallinity, enthalpy and gelatinization temperature decreased, indicating that the crystal structure of the native starch (NS) was damaged, and the molecules of starch was degradated after oxidation. After purification, the purity of MMT has increased from 87.09% to 99.55%, which means that the high purity MMT can be obtained by the simple centrifugation method. The purified MMT was subjected to ultrasonic treatment, and the average particle size was reduced from 2.77 μm to 0.99 μm, which indicates that the ultrasonic treatment can achieve the purpose of dispersing the MMT. When the starch film is prepared with OS with a DO of 5%, it has a smoother surface, significantly higher Young's modulus (YM) and light transmittance than native starch films. However, with the increase of the DO (5-15%), the mechanical and ultraviolet light barrier properties of the oxidized starch films tend to decrease. It may be caused by the degradation of starch molecules and the negative electrostatic repulsion of starch molecules, as a result, the starch chains is not tightly arranged. The experimental results of MMT-OS composite show that with the increase of MMT content (0-10%), the light transmittance and water vapor permeability (WVP) are significantly reduced while mechanical properties performed best with 2.5% of MMT. The results of MMT-CS-OS antibacterial composite show that CS can increase the ultraviolet light and water vapor barrier properties, and enhance the YM and tensile strength (TS) of the oxidized starch film at the same time. Furthermore, CS shows antibacterial activity against Escherichia coli and Staphylococcus aureus in MMT-CS-NS antibacterial composite.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:47:00Z (GMT). No. of bitstreams: 1
ntu-109-R06623026-1.pdf: 3028127 bytes, checksum: 67badecf29f3f88f470fd2f8060fa47d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄 IV
表目錄 IX
圖目錄 X
第一章、前言 1
第二章、文獻探討 2
2.1 澱粉 2
2.1.1 澱粉基本性質 2
2.1.1.1 澱粉粒 2
2.1.1.2 澱粉分子 2
2.1.1.3 澱粉粒內部結構 3
2.1.1.4 澱粉糊化 5
2.1.2 氧化澱粉 6
2.1.2.1 氧化澱粉介紹 6
2.1.2.2 TEMPO觸媒氧化澱粉 7
2.1.3 澱粉生物材料 8
2.1.3.1 生物可分解材料 8
2.1.3.2 澱粉材料的優勢及限制 10
2.1.3.3 澱粉材料的製備方法 10
2.1.3.4 塑化劑對澱粉材料的影響 11
2.1.3.5 氧化澱粉材料 11
2.1.3.6 澱粉複合材料 12
2.2 蒙特石 13
2.2.1 蒙特石結構 13
2.2.2 蒙特石純化 14
2.2.3 蒙特石改質及分散 15
2.2.3.1 蒙特石改質 15
2.2.3.2 蒙特石分散 16
2.2.4 蒙特石對材料的影響 17
2.2.4.1 機械性質 17
2.2.4.2 氣體阻隔性 17
2.2.4.3 熱穩定性 18
2.2.4.4 光阻隔性 18
2.3 幾丁聚醣 19
2.3.1 幾丁聚醣基本性質 19
2.3.2 幾丁聚醣抗菌機制 20
2.4 生物奈米複合材料 21
2.4.1 生物奈米複合材料定義及種類 21
2.4.2 生物奈米複合材料發展現況 23
第三章、材料與方法 25
3.1 試驗架構 25
3.2 材料 26
3.2.1 澱粉、蒙特石、幾丁聚醣與藥品 26
3.2.2 菌種及培養基配製 26
3.3 樣品製備 26
3.3.1 氧化澱粉製備 26
3.3.2 蒙特石處理 27
3.3.2.1 蒙特石純化 27
3.3.2.2 蒙特石超音波處理 27
3.3.3 蒙特石-澱粉複合膜製備 27
3.3.4 蒙特石-幾丁聚醣-澱粉抗菌複合膜 28
3.3.4.1 幾丁聚醣溶液製備 28
3.3.4.2 蒙特石-幾丁聚醣-澱粉抗菌複合膜製備 28
3.4 性質分析 29
3.4.1 氧化澱粉性質分析 29
3.4.1.1 氧化度測定 29
3.4.1.2 光學與偏光顯微鏡觀察 29
3.4.1.3 掃描式電子顯微鏡觀察 29
3.4.1.4 傅立葉轉換紅外光譜測定 30
3.4.1.5 X光繞射圖譜 30
3.4.1.6 熱性質測定 30
3.4.1.7 糊液黏度性質測定 30
3.4.1.8 分子量分布 31
3.4.2 蒙特石性質分析 32
3.4.2.1 蒙特石純化 32
3.4.2.1.1 純度測定 32
3.4.2.1.2 收率計算 32
3.4.2.2 超音波分散效率測定 33
3.4.2.3 粒徑分布 33
3.4.3 蒙特石-幾丁聚醣-澱粉抗菌複合膜性質分析 33
3.4.3.1 掃描式電子顯微鏡觀察 33
3.4.3.2 透光度測定 33
3.4.3.3 厚度測定 33
3.4.3.4 機械性質測定 34
3.4.3.5 水氣滲透性測定 34
3.4.3.6 X光繞射圖譜 34
3.4.3.7 外觀影像 35
3.4.3.8 衰減全反射傅立葉轉換紅外光譜測定 35
3.4.3.9 抗菌試驗 35
3.4.3.9.1 菌種培養 35
3.4.3.9.2 最低抑制濃度 35
3.4.3.9.3 抗菌活性測試 37
3.5 統計分析 37
第四章、結果與討論 38
4.1 氧化澱粉之製備與性質探討 38
4.1.1 氧化度 38
4.1.2 顯微鏡觀察 39
4.1.3 紅外光譜 40
4.1.4 X光繞射圖譜 42
4.1.5 熱性質 43
4.1.6 糊液黏度性質 44
4.1.7 分子量分布 45
4.2 蒙特石之純化、分散與性質探討 46
4.2.1 純度及收率 46
4.2.2 超音波分散效率 47
4.2.3 粒徑分布 48
4.3 蒙特石-澱粉複合膜之性質探討 50
4.3.1 掃描式電子顯微鏡觀察 50
4.3.2 透光度 51
4.3.3 機械性質 53
4.3.4 水氣滲透性 56
4.3.5 X光繞射圖譜 58
4.4 蒙特石-幾丁聚醣-澱粉抗菌複合膜之功能性質 60
4.4.1 外觀影像 60
4.4.2 掃描式電子顯微鏡觀察 61
4.4.3 透光度 61
4.4.4 機械性質 62
4.4.5 水氣滲透性 63
4.4.6 X光繞射圖譜 64
4.4.7 紅外光譜 66
4.4.8 抗菌試驗 68
4.4.8.1 最低抑制濃度 68
4.4.8.2 抗菌試驗結果 70
第五章、結論 72
第六章、參考資料 74
dc.language.isozh-TW
dc.title鈉蒙特石-幾丁聚醣-TEMPO觸媒氧化澱粉抗菌複合膜之製備及性質分析zh_TW
dc.titlePreparation and characterization of Na-MMT, chitosan and TEMPO-oxidized starch antibacterial composite filmsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和,邵貽沅,呂廷璋
dc.subject.keyword可生物降解材料,TEMPO觸媒氧化,幾丁聚醣,蒙特石,抗菌活性,zh_TW
dc.subject.keywordbiodegradable film,TEMPO-media oxidation,chitosan,montmorillonite,antibacterial activity,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202000625
dc.rights.note未授權
dc.date.accepted2020-02-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-109-R06623026-1.pdf
  目前未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved