請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77105
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Chih-Hsuan Chan | en |
dc.contributor.author | 詹芷瑄 | zh_TW |
dc.date.accessioned | 2021-07-10T21:46:50Z | - |
dc.date.available | 2021-07-10T21:46:50Z | - |
dc.date.copyright | 2020-03-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-27 | |
dc.identifier.citation | 中國國家標準化管理委員會。(2005)。中華人民共和國國家標準GB-3469。中華人民共和國衛生部。
黃永融。(2018)。台灣高直鏈澱粉玉米與硬質玉米全榖粉之安定化。國立臺灣大學,碩士論文,台北、台灣。 蔡沐芳。(2017)。台灣高直鏈澱粉玉米之理化性質及其應用: 國立臺灣大學,碩士論文,台北、台灣。 AACC. 2000. Approved Method of the American Association of Cereal Chemists., Minneapolis, MN, USA: AACC Inc. AOAC. 1990. Official Method of Analysis, 15thed., Arlington, VA, USA: AOAC International. Badenhuizen, NP. 1937. Die Struktur des Stärkekorns. Protoplasma. 28(1): 293-326. Bressani, R. 1992. Protein quality of high-lysine maize for humans. Cereal foods world (USA). 36(9): 806-811. Brumovsky, JO, & Thompson, DB. 2001. Production of Boiling-Stable Granular Resistant Starch by Partial Acid Hydrolysis and Hydrothermal Treatments of High-Amylose Maize Starch. Cereal Chemistry. 78(6): 680-689. Campbell, MR, Jane, Jl, Pollak, L, Blanco, M, & O'Brien, A. 2007. Registration of Maize Germplasm Line GEMS-0067. Journal of Plant Registrations. 1(1): 60-61. Carvalho, CWP, Takeiti, CY, Onwulata, CI, & Pordesimo, LO. 2010. Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. Journal of Food Engineering. 98(1): 103-109. Chen, X, Du, X, Chen, P, Guo, L, Xu, Y, & Zhou, X. 2017. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment. Carbohydr Polym. 157: 637-642. Chung, HJ, Liu, Q, & Hoover, R. 2009. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers. 75(3): 436-447. Council, NR. 1989. Recommended Dietary Allowances: 10th Edition (Ed.^Eds.). Washington, DC: The National Academies Press. Cozzolino, D. 2016. The use of the rapid visco analyser (RVA) in breeding and selection of cereals. Journal of Cereal Science. 70: 282-290. Della Valle, G, Vergnes, B, Colonna, P, & Patria, A. 1997. Relations between rheological properties of molten starches and their expansion behaviour in extrusion. Journal of Food Engineering. 31(3): 277-295. Dynisco. 2019. An Introduction to Single Screw Extrusion. Retrieved from https://www.azom.com/article.aspx?ArticleID=13566 Eerlingen, RC, Deceuninck, M, & Delcour, JA. 1994. Enzyme-resistant starch. Ⅱ. Influence of amylose chain-length on resistant starch formation. Cereal Chemistry. 70(3): 345-350. Englyst, H, Kingman, S, & Cummings, J. 1992. Classification and Measurement of Nutritionally Important Starch Fractions. European journal of clinical nutrition. 46 Suppl 2: S33-50. Ferguson, LR, Tasman-Jones, C, Englyst, H, & Harris, PJ. 2000. Comparative Effects of Three Resistant Starch Preparations on Transit Time and Short-Chain Fatty Acid Production in Rats. Nutrition and Cancer. 36(2): 230-237. French, D. 1984. CHAPTER VII - organization of starch structure. In Starch: Chemistry and Technology (Second Edition) (pp. 183-247). San Diego: Academic Press. Fuentes-Zaragoza, E, Riquelme-Navarrete, MJ, Sánchez-Zapata, E, & Pérez-Álvarez, JA. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43(4): 931-942. Gallant, DJ, Bouchet, B, & Baldwin, PM. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydrate Polymers. 32(3): 177-191. Gunaratna, NS, Groote, HD, Nestel, P, Pixley, KV, & McCabe, GP. 2010. A meta-analysis of community-based studies on quality protein maize. Food Policy. 35(3): 202-210. Gunaratne, A, & Hoover, R. 2002. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers. 49(4): 425-437. Harper, JM, & Clark, JP. 1979. Food extrusion. C R C Critical Reviews in Food Science and Nutrition. 11(2): 155-215. Ji, Z, Yu, L, Liu, H, Bao, X, Wang, Y, & Chen, L. 2017. Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocolloids. 72: 331-337. Jiang, H, Horner, HT, Pepper, TM, Blanco, M, Campbell, M, & Jane, J-l. 2010. Formation of elongated starch granules in high-amylose maize. Carbohydrate Polymers. 80(2): 533-538. Kim, WK, Chung, MiK, Kang, NE, Kim, MH, & Park, OJ. 2003. Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. The Journal of Nutritional Biochemistry. 14(3): 166-172. Koizumi, K, Fukuda, M, & Hizukuri, S. 1991. Estimation of the distributions of chain length of amylopectins by high-performance liquid chromatography with pulsed amperometric detection. Journal of Chromatography A. 585(2): 233-238. Kristiawan, M, Chaunier, L, Della Valle, G, Ndiaye, A, & Vergnes, B. 2016. Modeling of starchy melts expansion by extrusion. Trends in Food Science & Technology. 48: 13-26. Li, L, Jiang, H, Campbell, M, Blanco, M, & Jane, J-l. 2008. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers. 74(3): 396-404. Lindseth, G, Helland, B, & Caspers, J. 2015. The effects of dietary tryptophan on affective disorders. Archives of psychiatric nursing. 29(2): 102-107. Liu, H, Yu, L, Xie, F, & Chen, L. 2006. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers. 65(3): 357-363. Martinez, MM, Li, C, Okoniewska, M, Mukherjee, I, Vellucci, D, & Hamaker, B. 2018. Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydr Polym. 197: 531-539. Masatcioglu, TM, Sumer, Z, & Koksel, H. 2017. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. Journal of Cereal Science. 74: 95-102. Mertz, ET, Bates, LS, & Nelson, OE. 1964. Mutant Gene That Changes Protein Composition and Increases Lysine Content of Maize Endosperm. Science. 145(3629): 279. Moraru, CI, & Kokini, JL. 2003. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods. Comprehensive Reviews in Food Science and Food Safety. 2(4): 147-165. Moros, EE, Darnoko, D, Cheryan, M, Perkins, EG, & Jerrell, J. 2002. Analysis of Xanthophylls in Corn by HPLC. Journal of Agricultural and Food Chemistry. 50(21): 5787-5790. Nurit, E, Tiessen, A, Pixley, KV, & Palacios-Rojas, N. 2009. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels. J Agric Food Chem. 57(16): 7233-7238. Nuss, ET, & Tanumihardjo, SA. 2011. Quality Protein Maize for Africa: Closing the Protein Inadequacy Gap in Vulnerable Populations. Advances in Nutrition. 2(3): 217-224. Ozturk, S, Koksel, H, Kahraman, K, & Ng, PKW. 2009. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. European Food Research and Technology. 229(1): 115-125. Pérez, S, & Bertoft, E. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke. 62(8): 389-420. Seddon, JM, Ajani, UA, Sperduto, RD, Hiller, R, Blair, N, Burton, TC, . . . Willett, W. 1994. Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration. JAMA. 272(18): 1413-1420. Siyuan, S, Tong, L, & Ruihai, L. 2018. Corn phytochemicals and their health benefits. Food Science and Human Wellness. 7(3): 185-195. TA instruments application guide. 2016. In Comparison of the hardness and fracturability of shortbread and ginger nut biscuits by penetration with a cylinder probe. Retrieved from http://www.stablemicrosystems.com Takeda, C, Takeda, Y, & Hizukuri, S. 1993. Structure of the amylopectin fraction of amylomaize. Carbohydrate Research. 246(1): 273-281. Tomé, D, & Bos, Cc. 2007. Lysine Requirement through the Human Life Cycle. The Journal of Nutrition. 137(6): 1642S-1645S. Twumasi-Afriye, S, Palacios Rojas, N, Friesen, D, Teklewold, A, Gissa, DW, De Groote, H, & Prasanna, BM. 2016. Guidelines for the quality control of quality protein maize seed and grain (Ed.^Eds.): CIMMYT. Vamadevan, V, & Bertoft, E. 2018. Impact of different structural types of amylopectin on retrogradation. Food Hydrocolloids. 80: 88-96. Walter, M, da Silva, LP, & Denardin, CC. 2005. Rice and resistant starch: different content depending on chosen methodology. Journal of Food Composition and Analysis. 18(4): 279-285. Watson, SA, & Ramstad, PE. 1987. Corn: chemistry and technology (Ed.^Eds.): American Association of Cereal Chemists. White, PJ, & Johnson, LA. 2003. Corn: chemistry and technology (Ed.^Eds. 2 ed.): American Association of Cereal Chemists, Inc. World of corn 2019. 2019. Retrieved from USA: Wrigley, C, Batey, I, & Miskelly, D. 2017. Cereal Grains: Assessing and Managing Quality (Ed.^Eds.): Woodhead Publishing. Wrigley, CW, H., C, K., S, & Faubion, J. 2016. Encyclopedia of Food Grains (Ed.^Eds. 2 ed. Vol. 4): Academic Press. Zavareze, EdR, & Dias, ARG. 2011. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers. 83(2): 317-328. Zavareze, EdR, Storck, CR, de Castro, LAS, Schirmer, MA, & Dias, ARG. 2010. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chemistry. 121(2): 358-365. Zhang, G, Ao, Z, & Hamaker, BR. 2008. Nutritional Property of Endosperm Starches from Maize Mutants: A Parabolic Relationship between Slowly Digestible Starch and Amylopectin Fine Structure. Journal of Agricultural and Food Chemistry. 56(12): 4686-4694. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77105 | - |
dc.description.abstract | 本研究利用台中霧峰農試所育種之高直鏈澱粉玉米(high amylose maize, HAM)、優質蛋白玉米(quality protein maize, QPM)、與國外引進之高直鏈澱粉玉米(germplasm enhancement of maize, code GEMS0067, GEMS)進行產品加工特性研究,高直鏈澱粉玉米之直鏈澱粉含量皆高於70%。為防止全籽粒研磨之榖粉因油脂氧化產生不良風味,分別利用擠壓與濕式處理的方式進行安定化,由40°C儲藏試驗之酸價結果顯示,經處理之樣品,當水分含量乾燥至7%以下時,酸價不會再上升,具有良好貯藏性,但擠壓及濕式處理則會對穀粉中之澱粉性質及機能性成分含量產生影響。經處理樣品,其一般成分(粗蛋白、粗脂肪及灰分)含量無顯著差異。擠壓處理之三種參數(水分含量、溫度及轉速)對擠出物性質有不同程度的影響;水分含量提高時,會降低剪切作用;溫度升高及轉速提高時,會提高冷水糊液黏度及最終糊液黏度。所有擠壓樣品之玉米黃素及葉黃素含量,則降低至原料的50%以下。優質蛋白玉米(QPM)全榖粉在水分含量小於25%、溫度高於60°C以及轉速大於90 rpm條件操作下,發生澱粉糊化或破損現象。高直鏈澱粉玉米(HAM)全榖粉之澱粉則需要在80-120-140-150-140°C溫度設定,水分含量低至18%才可能被破壞。濕熱安定化處理後,高直鏈澱粉玉米全榖粉的尖峰糊液黏度及最終糊液黏度皆下降,抗性澱粉含量提高,但消化速率加快,水溶解度及膨潤力上升,推測在濕式處理過程中有部分直鏈澱粉溶出,同時產生RS III型抗性澱粉;優質蛋白玉米則相反,其糊化溫度被推遲,推測此處理造成直鏈澱粉重排成緊密結構,又因其可被消化澱粉量及預估升糖指數上升,推測非結晶區受濕式處理破壞,易受酵素作用。兩種玉米全穀粉因直鏈澱粉含量不同而有相反的結果,值得進一步探討濕式處理對澱粉分子結構變化的影響。本研究以質地分析結果篩選兩種即食擠壓產品。另,依據消化性質與風味考量,提出兩種即食性玉米沖泡粉配方產品,與原料消化性質相比,混合後消化速率降低,具有良好市場開發潛力。 | zh_TW |
dc.description.abstract | This study focused on three varieties of corn, quality protein maize (QPM) and high amylose maize (HAM) bred by Taiwan Agricultural Research Institute and high amylose maize variety GEMS-0067 derived from Agricultural Research Service of United States Department of Agriculture. The amylose contents of two high amylose maize varieties exceeded 70%. The purpose of this research was to stabilize the whole corn flour using either extrusion technology or wet-treatment and to develop both extruded snacks and instant drink products. According to the results of storage test conducted at 40°C, as long as the final moisture content stayed less than 7%, both extrusion and HMT could inhibit the increasing acid value compared to the native control group. But at the same time, the stabilization treatment might change the physicochemical properties of starch and the amount of functional compositions. And the crude protein, crude fat and ash content didn’t change before and after treatment. Moisture content (MC), temperature profile and screw speed as three main parameters of extrusion process, they modified the materials in different ways. Higher input MC would reduce the shearing effect during extrusion, while higher temp. profile and screw speed led to higher cold water viscosity and final viscosity (FV). The lutein and zeaxanthin contents in all samples had declined to less than 50%. As for QPM, the conditions with MC less than 25%, temp. higher than 60°C and screw speed over 90 rpm made starch granules gelatinized or damaged thus having cold water viscosity. However, starch granules of high amylose maize wouldn’t be damaged unless stricter conditions with temp. profile 80-120-140-150-140°C with MC lower than 18% were performed. On the other hand, HMT lowered the peak viscosity (PV) and FV of GEMS-0067 starch in rapid viscosity analysis. At the same time, the resistant starch contents and digestive rate, as well as solubility and swelling power at 90°C, became higher after HMT, indicating the formation of RS and amylose leaching during treatment. In contrast, the pasting temp. of QPM was delayed after HMT accompanied by higher digestible starch contents and eGI value, which implied that HMT might rearranged the amylose chains into more ordered structure but the amorphous region became more accessible for digestive enzymes. The reverse effect of HMT on QPM and GEMS-0067 needed other explanation from starch molecular aspect. Furthermore, this study also developed two extruded snack products and two instant drink formulae based on digestive properties and flavors of samples under mentioned treatment. Compared with the ingredients, the mixed instant drink formulae had much lower digestive rate, indicating competitive potentials as low glycemic index food. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:46:50Z (GMT). No. of bitstreams: 1 ntu-109-R06623034-1.pdf: 4043605 bytes, checksum: 7e734e1892a881ff4c5cfe1a9c5d3506 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目錄
中文摘要 I ABSTRACT II 目錄 IV 表目錄 X 圖目錄 XII 第一章 前言 1 第二章 文獻探討 2 2.1 玉米介紹 2 2.1.1 玉米簡介 2 2.1.2 玉米籽粒構造 2 2.1.3 玉米中葉黃素 3 2.2 澱粉粒基本結構及性質 4 2.2.1 澱粉粒基本結構 4 2.2.2 澱粉化學性質 6 2.2.2.1.1 直鏈澱粉單股螺旋結構 6 2.2.2.1.2 直鏈澱粉雙股螺旋結構 6 2.2.3 支鏈澱粉 7 2.3 高直鏈澱粉玉米 8 2.4 優質蛋白玉米 8 2.4.1 離胺酸與色胺酸簡介 8 2.4.2 優質蛋白玉米育種 9 2.4.3 優質蛋白玉米營養價值 9 2.4.4 優質蛋白玉米定量標準 9 2.5 擠壓處理 10 2.6 擠壓技術簡介 10 2.7 澱粉於擠壓過程中之性質變化與膨發特性 11 2.8 濕式處理 13 2.8.1 濕式處理定義 13 2.8.2 濕式處理之澱粉理化性質變化 13 2.9 澱粉消化性質 14 2.10 油脂氧化 15 第三章 材料與方法 16 3.1 材料與化學試劑 16 3.1.1 高直鏈澱粉玉米 16 3.1.2 優質蛋白玉米 16 3.1.3 分析試劑 17 3.2 試驗架構 18 3.3 分析樣品製備 19 3.3.1 一般成分分析樣品磨粉 19 3.3.2 機能性成分分析樣品磨粉 19 3.4 擠壓處理 19 3.4.1 優質蛋白玉米擠壓處理 19 3.4.2 高直鏈澱粉玉米擠壓處理 20 3.4.3 不同糊化程度之玉米全榖粉 22 3.5 濕式處理 23 3.6 終產品製備 23 3.6.1.1 擠壓點心產品預實驗 23 3.6.1.1.1 優質蛋白玉米(QPM)擠壓膨發產品 23 3.6.1.1.2 高直鏈澱粉玉米(HAM)與優質蛋白玉米(QPM)擠壓脆片脆片產品 24 3.6.1.2 擠壓點心終產品 25 3.6.2 玉米即食沖泡粉產品 25 3.7 本研究試驗條件及樣品處理對照表 26 3.8 分析方法 27 3.8.1 玉米全榖粉之理化性質分析 27 3.8.1.1 一般成分 27 3.8.1.1.1 水分含量 27 3.8.1.1.2 灰分含量 27 3.8.1.1.3 粗脂肪含量 27 3.8.1.1.4 粗蛋白含量 27 3.8.1.1.5 膳食纖維含量 28 3.8.1.2 全穀粉粒徑分布測定 28 3.8.1.3 總澱粉含量 29 3.8.1.4 視直鏈澱粉含量 29 3.8.1.5 熱性質分析 30 3.8.1.6 糊液黏度性質 31 3.8.1.6.1 優質蛋白玉米糊液黏度測定 31 3.8.1.6.2 高直鏈澱粉玉米全榖粉糊液黏度測定 32 3.8.1.6.3 沖泡粉產品糊液黏度測定 32 3.8.1.7 玉米全穀粉貯藏穩定性評估 33 3.8.1.7.1 水活性測定 33 3.8.1.7.2 酸價 33 3.8.2 玉米全榖粉機能性成分 33 3.8.2.1 總黃色素含量 33 3.8.2.2 葉黃素種類及含量 34 3.8.2.3 消化性質 34 3.8.2.3.1 體外消化試驗 34 3.8.2.3.2 預估升糖指數 35 3.8.2.4 必需胺基酸含量測定 36 3.8.2.4.1 色胺酸含量測定 36 3.8.3 玉米擠壓產品及沖泡粉之品質評估 36 3.8.3.1 擠壓產品質地分析 36 3.8.3.2 吸水性質 37 3.9 統計分析 37 第四章 結果與討論 38 4.1 玉米全榖粉性質 38 4.1.1 一般成分及總澱粉含量 38 4.1.2 機能性成分 40 4.2 擠壓處理對優質蛋白玉米全榖粉性質影響 41 4.2.1 擠壓原料磨粉粒徑 41 4.2.2 優質蛋白玉米擠壓樣品外觀 42 4.2.3 貯藏期間酸價變化 43 4.2.4 糊液黏度性質 43 4.2.5 小結 44 4.3 擠壓處理對高直鏈澱粉玉米(HAM)全榖粉性質影響 45 4.3.1 高直鏈澱粉玉米HAM擠壓樣品外觀 45 4.3.2 貯藏期間酸價變化 46 4.3.3 糊液黏度性質 47 4.3.4 熱性質 50 4.3.5 體外消化性質 51 4.3.6 預估升糖指數 53 4.3.7 小結 54 4.4 不同糊化程度之擠壓安定化全榖粉 55 4.4.1 貯藏期間酸價變化 55 4.4.2 糊液黏度性質 55 4.4.3 機能性成分 57 4.4.4 體外消化性質 57 4.4.5 預估升糖指數 58 4.4.6 小結 59 4.5 濕式處理對高直鏈澱粉玉米及優質蛋白玉米全榖粉性質影響 59 4.5.1 一般成分、總澱粉及直鏈澱粉含量 59 4.5.2 機能性成分 61 4.5.3 貯藏期間酸價變化 61 4.5.5 體外消化性質 64 4.5.6 預估升糖指數評估 64 4.5.7 濕式處理樣品之水合性質 65 4.5.8 小結 65 4.6 擠壓點心產品 66 4.6.1 擠壓點心產品預實驗 66 4.6.1.1 優質蛋白玉米(QPM)擠壓膨發產品 66 4.6.1.1.1 外觀形態 66 4.6.1.1.2 質地分析 66 4.6.1.2 高直鏈澱粉玉米(HAM)與優質蛋白玉米(QPM)擠壓脆片脆片產品 69 4.6.1.2.1 外觀形態 69 4.6.1.2.2 質地分析 69 4.6.2 一般成分 72 4.6.3 體外消化性質 73 4.6.4 預估升糖指數 73 4.6.5 小結 75 4.7 玉米即食沖泡粉產品性質 75 4.7.1 沖泡粉原料、配方及沖泡飲品外觀 75 4.7.2 熱糊黏度 76 4.7.3 一般成分組成及色胺酸含量 76 4.7.4 體外消化性質 78 4.7.5 預估升糖指數評估 78 4.7.6 小結 79 第五章 結論 80 第六章 參考文獻 82 | |
dc.language.iso | zh-TW | |
dc.title | 以高直鏈澱粉玉米與硬質玉米開發具機能性之擠壓膨發與沖泡粉產品 | zh_TW |
dc.title | Functional extruded puffing and drink products developed by using high amylose maize and flint corn | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邵貽沅,張永和,呂廷璋 | |
dc.subject.keyword | 高直鏈澱粉玉米,優質蛋白玉米,擠壓,濕式處理,安定化, | zh_TW |
dc.subject.keyword | high amylose maize,quality protein maize,extrusion,wet-treatment,stabilization, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU202000641 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-02-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-R06623034-1.pdf 目前未授權公開取用 | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。