請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77083完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
| dc.contributor.author | I-Chi Lee | en |
| dc.contributor.author | 李亦騏 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:45:58Z | - |
| dc.date.available | 2021-07-10T21:45:58Z | - |
| dc.date.copyright | 2020-07-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-06-20 | |
| dc.identifier.citation | References Adani Pujada, L. W., Aashka Patel Zhang and T. L. D. , Tien Anh Bui and Pallavi Garg (2017). 'Matrix metalloproteinase MMP9 maintains epithelial barrier.pdf.' Aras, E., G. Ramadori, K. Kinouchi, Y. Liu, R. M. Ioris, X. Brenachot, S. Ljubicic, C. Veyrat-Durebex, S. Mannucci, M. Galie, P. Baldi, P. Sassone-Corsi and R. Coppari (2019). 'Light Entrains Diurnal Changes in Insulin Sensitivity of Skeletal Muscle via Ventromedial Hypothalamic Neurons.' Cell Rep 27(8): 2385-2398 e2383. Chen, S. K., T. C. Badea and S. Hattar (2011). 'Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs.' Nature 476(7358): 92-95. Chen, S. K., K. S. Chew, D. S. McNeill, P. W. Keeley, J. L. Ecker, B. Q. Mao, J. Pahlberg, B. Kim, S. C. Lee, M. A. Fox, W. Guido, K. Y. Wong, A. P. Sampath, B. E. Reese, R. Kuruvilla and S. Hattar (2013). 'Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.' Neuron 77(3): 503-515. Chew, K. S., J. M. Renna, D. S. McNeill, D. C. Fernandez, W. T. Keenan, M. B. Thomsen, J. L. Ecker, G. S. Loevinsohn, C. VanDunk, D. C. Vicarel, A. Tufford, S. Weng, P. A. Gray, M. Cayouette, E. D. Herzog, H. Zhao, D. M. Berson and S. Hattar (2017). 'A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice.' Elife 6. Cui, M., H. Xiao, D. Luo, X. Zhang, S. Zhao, Q. Zheng, Y. Li, Y. Zhao, J. Dong, H. Li, H. Wang and S. Fan (2016). 'Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.' Int J Mol Sci 17(11). Figueiro, M. G. and M. S. Rea (2010). 'The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin.' Int J Endocrinol 2010: 829351. Fonken, L. K., T. G. Aubrecht, O. H. Melendez-Fernandez, Z. M. Weil and R. J. Nelson (2013). 'Dim light at night disrupts molecular circadian rhythms and increases body weight.' J Biol Rhythms 28(4): 262-271. Fonken, L. K., J. L. Workman, J. C. Walton, Z. M. Weil, J. S. Morris, A. Haim and R. J. Nelson (2010). 'Light at night increases body mass by shifting the time of food intake.' Proc Natl Acad Sci U S A 107(43): 18664-18669. Fred W. Turek, C. J., Akira Kohsaka,Emily Lin, Ganka Ivanova, Erin McDearmon,Aaron Laposky, Sue Losee-Olson, Amy Easton,Dalan R. Jensen, Robert H. Eckel, Joseph S. Takahashi, Joseph Bass (2005). 'Obesity and Metabolic Syndrome in circadian clock mutant mice.' Fung, T. C., C. A. Olson and E. Y. Hsiao (2017). 'Interactions between the microbiota, immune and nervous systems in health and disease.' Nat Neurosci 20(2): 145-155. Hattar, S., M. Kumar, A. Park, P. Tong, J. Tung, K. W. Yau and D. M. Berson (2006). 'Central projections of melanopsin-expressing retinal ganglion cells in the mouse.' J Comp Neurol 497(3): 326-349. King, A. J. (2012). 'The use of animal models in diabetes research.' Br J Pharmacol 166(3): 877-894. Kvist-Reimer, M., F. Sundler and B. Ahren (2002). 'Effects of chemical sympathectomy by means of 6-hydroxydopamine on insulin secretion and islet morphology in alloxan-diabetic mice.' Cell Tissue Res 307(2): 203-209. Leibowitz, S. F. and K. E. Wortley (2004). 'Hypothalamic control of energy balance: different peptides, different functions.' Peptides 25(3): 473-504. Marcheva, B., K. M. Ramsey, E. D. Buhr, Y. Kobayashi, H. Su, C. H. Ko, G. Ivanova, C. Omura, S. Mo, M. H. Vitaterna, J. P. Lopez, L. H. Philipson, C. A. Bradfield, S. D. Crosby, L. JeBailey, X. Wang, J. S. Takahashi and J. Bass (2010). 'Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes.' Nature 466(7306): 627-631. Mazuski, C., J. H. Abel, S. P. Chen, T. O. Hermanstyne, J. R. Jones, T. Simon, F. J. Doyle, 3rd and E. D. Herzog (2018). 'Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons.' Neuron 99(3): 555-563 e555. McFadden, E., M. E. Jones, M. J. Schoemaker, A. Ashworth and A. J. Swerdlow (2014). 'The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study.' Am J Epidemiol 180(3): 245-250. McMahan, R. S., T. P. Birkland, K. S. Smigiel, T. C. Vandivort, M. G. Rohani, A. M. Manicone, J. K. McGuire, S. A. Gharib and W. C. Parks (2016). 'Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation.' J Immunol 197(3): 899-909. Michael W. Schwartz*, S. C. W., Daniel Porte Jr*, Randy J. Seeley† Denis G. Baskin*‡ (2000). 'Central nervous system control of food intake.' Nature. Moen, S. H., B. Ehrnstrom, J. F. Kojen, M. Yurchenko, K. S. Beckwith, J. E. Afset, J. K. Damas, Z. Hu, H. Yin, T. Espevik and J. Stenvik (2019). 'Human Toll-like Receptor 8 (TLR8) Is an Important Sensor of Pyogenic Bacteria, and Is Attenuated by Cell Surface TLR Signaling.' Front Immunol 10: 1209. Munch, I. C., M. Moller, P. J. Larsen and N. Vrang (2002). 'Light-induced c-Fos expression in suprachiasmatic nuclei neurons targeting the paraventricular nucleus of the hamster hypothalamus: phase dependence and immunochemical identification.' J Comp Neurol 442(1): 48-62. Murphy, P. M. (2008). Chemokines and chemokine receptors. Clinical Immunology: 173-196. Pelleymounter, M. A., Lorden, J. F. (1983). Feeding, activity, and body temperature following 6-hydroxydopamine lesions in diabetes (db/db) mice. Behavioral Neuroscience, 97(5), 810–821. R. J. Lucas, S. H., 2* M. Takao, D. M. Berson, R. G. Foster, K.-W. Yau (2003). 'diminished-pupillary-light-reflex-at-high-irradiances-in-melanopsin-knockout-mice.' Ramadori, G., T. Fujikawa, J. Anderson, E. D. Berglund, R. Frazao, S. Michan, C. R. Vianna, D. A. Sinclair, C. F. Elias and R. Coppari (2011). 'SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance.' Cell Metab 14(3): 301-312. Schmidt, T. M., N. M. Alam, S. Chen, P. Kofuji, W. Li, G. T. Prusky and S. Hattar (2014). 'A role for melanopsin in alpha retinal ganglion cells and contrast detection.' Neuron 82(4): 781-788. Sonoda, T., S. K. Lee, L. Birnbaumer and T. M. Schmidt (2018). 'Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits.' Neuron 99(4): 754-767 e754. Sonoda, T. and T. M. Schmidt (2016). 'Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions.' Integr Comp Biol 56(5): 834-841. Soriano, M. I., B. Roibas, A. B. Garcia and M. Espinosa-Urgel (2010). 'Evidence of circadian rhythms in non-photosynthetic bacteria?' Journal of Circadian Rhythms 8(0). Stabio, M. E., S. Sabbah, L. E. Quattrochi, M. C. Ilardi, P. M. Fogerson, M. L. Leyrer, M. T. Kim, I. Kim, M. Schiel, J. M. Renna, K. L. Briggman and D. M. Berson (2018). 'The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell.' Neuron 97(1): 150-163 e154. Torres, S. J. and C. A. Nowson (2007). 'Relationship between stress, eating behavior, and obesity.' Nutrition 23(11-12): 887-894. Wang, Y., Z. Kuang, X. Yu, K. A. Ruhn, M. Kubo and L. V. Hooper (2017). 'The intestinal microbiota regulates body composition through NFIL3 and the circadian clock.' Science 357(6354): 912-916. Willemze, R. A., O. Welting, P. van Hamersveld, C. Verseijden, L. E. Nijhuis, F. W. Hilbers, S. L. Meijer, B. A. Heesters, J. H. A. Folgering, H. Darwinkel, P. Blancou, M. J. Vervoordeldonk, J. Seppen, S. E. M. Heinsbroek and W. J. de Jonge (2019). 'Loss of intestinal sympathetic innervation elicits an innate immune driven colitis.' Mol Med 25(1): 1. Wyse, C., C. Selman, M. Page, A. Coogan and D. Hazlerigg (2011). 'Circadian desynchrony and metabolic dysfunction; did light pollution make us fat?' Medical hypotheses 77(6): 1139-1144. Xie, F., H. Fu, J. F. Hou, K. Jiao, M. Costigan and J. Chen (2013). 'High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.' PLoS One 8(2): e57427. Zhang, J., K. Kaasik, M. R. Blackburn and C. C. Lee (2006). 'Constant darkness is a circadian metabolic signal in mammals.' Nature 439(7074): 340-343. Zhong, L. X., X. N. Li, G. Y. Yang, X. Zhang, W. X. Li, Q. Q. Zhang, H. X. Pan, H. H. Zhang, M. Y. Zhou, Y. D. Wang, W. W. Zhang, Q. S. Hu, W. Zhu and B. Zhang (2019). 'Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice.' PLoS One 14(12): e0225813. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77083 | - |
| dc.description.abstract | 視網膜上的內生感光神經節細胞(ipRGCs)能感知環境的光線,除了能調控哺乳動物的生理時鐘,也影響周邊組織的生理週期並調節多種賀爾蒙的恆定。近期在小鼠模型上的研究顯示,不正常的日夜週期會引起肥胖、胰島素抗性和的腸道菌相的改變,然而目前造成上述結果的生理機制仍大部分未知。實驗室先前的研究顯示,長期夜晚接受微弱光線(dLAN)照射的小鼠腸道菌相組成改變,並使其表現週期紊亂。在此研究中,我們比較飼養在正常光週期(LD)與夜晚接受微弱光線(dLAN)照射兩週的小鼠其小腸基因表現,並探討哪些基因的表現受到環境光線影響,進而影響其代謝機制和腸道菌相間的交互關係。研究結果顯示,夜晚接受微弱光照小鼠的腸道免疫基因和對抗發炎反應的基因表現表現較高,也有許多蛋白質和脂質消化吸收的基因表現偏高,例如MMP10與Iglv3。然而遭受夜晚光照而升高的生理時鐘基因(Bmal),然而在裡用6-OJDA阻絕交感神經後,遭受夜晚光照小鼠的Bmal表現量與正常光照週期小鼠的小腸基因表現量相比有顯著上升。總結本篇研究顯示,遭受夜晚光照的小鼠會經由交感神經引發小腸的發炎反應,但腸道生理時鐘的調控不透過交感神經。 | zh_TW |
| dc.description.abstract | Recent studies have shown that intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina could transmit environmental light information to influence mammalian circadian central clocks at the suprachiasmatic nucleus (SCN) as well as peripheral circadian oscillations and several physiological hormone homeostases. In previous research, disruption of the normal light-dark cycle causes obesity, insulin resistance, and abnormal gut microbiota oscillation in mice. However, how environmental light influences the gut microbiota and host metabolism remains unknown. In this study, we performed a transcriptome analysis of mouse intestine tissue housed under normal light-dark cycle or dim light at night (dLAN) to investigate the genes regulated by environmental light. We observed the up-regulation of genes such as MMP10 and Iglv3, which are involved in immune response and inflammatory under dLAN condition. Besides, the energy balance relative genes such as protein and fats absorption, and circadian related genes such as Nr1d1 and Bmal show higher expression after 2-3 weeks of dLAN treatment. Specifically, Bmal expression is higher in the duodenum under dLAN whether the sympathetic nerve was eliminated or not. Our result suggested that dim light at night induced small intestine inflammation in mice through the sympathetic nervous system. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:45:58Z (GMT). No. of bitstreams: 1 U0001-1806202013225600.pdf: 5969676 bytes, checksum: 58c9fe5ae3df4eab056303dabce0c0b5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii Chapter Ⅰ Introduction 1 1.1 Circadian rhythm 1 1.2 Intrinsically photosensitive retinal ganglion cells (ipRGCs) 2 1.3 The effects of abnormal light-dark cycle on physiological function 3 1.4 The function of the ventromedial hypothalamus (VMH) 4 1.5 The relation between light at night and obesity 5 1.6 Gut-brain axis 5 Statement of purpose 7 Chapter Ⅱ Materials and methods 9 2.1 Animals 9 2.2 Experiment design 10 2.3 Metabolism test 11 2.3.1 Glucose tolerance test (GTT) 11 2.3.2 Insulin tolerance test (ITT) 11 2.4 Transcriptome analysis of intestine tissue 12 2.5 Quantitative real-time polymerase chain reaction (qRT-PCR) 12 2.5.1 RNA extraction 13 2.5.2 Reverse transcription of RNA 14 2.6 Immunofluorescence staining 14 2.7 Statistical analysis 15 Chapter Ⅲ Results 16 3.1 Dim light at night (dLAN) condition can increase mice body weight. 16 3.2 Light at night alters gene expressions in the small intestine in two weeks. 17 3.3 The NGS analysis in the ileum under four weeks of light treatment. 19 3.4 Elimination of the sympathetic nerve through 6-OHDA. 21 3.5 Validation of the NGS identified genes in two weeks by qPCR. 22 3.6 Validation of the DEGs in two weeks of light treatment. 23 3.7 The light could activate anterior ventromedial hypothalamus neurons 24 3.8 The light-activated non-SF1 neurons in aVMH. 25 Chapter Ⅳ Discussion 26 4.1 The light at night causes differential expressed genes compared to LD mice. 26 4.2 The dLAN condition increases immune gene related to gut microbiota. 27 4.3 The dLAN condition changed circadian clock genes expression level. 28 4.4 The pathways of dLAN-induced effects change energy homeostasis. 29 4.5 Acute light exposure at night-time activated non-SF1 neurons in aVMH. 30 Significance of the work 31 References 33 Figures. 39 Figure 1. Experiment design. 39 Figure 2. Metabolic status of light-treated male mice in six weeks. 40 Figure 3. Glucose tolerance test in wild-type male mice for six weeks. 41 Figure 4. Metabolic status of light-treated mice for two weeks. 42 Figure 5. Venn diagram of gene expression in LD and dLAN group. 43 Figure 6. Filtering the differential expression genes by NGS analysis (p-adj<0.05). 44 Figure 7. Gene ontology (GO) enrichment bar chart of DEGs 45 Figure 8. Filtering the differential expression genes by NGS analysis. 46 Figure 9. Gene ontology (GO) enrichment bar chart of DEGs. 47 Figure 10. Metabolic status of light-treated mice in 4 weeks for NGS-2 48 Figure 11. Glucose metabolism of wild-type mice treated with light for four weeks. 49 Figure 12. Volcano plot of DEGs distribution and significance in the ileum of mice. 50 Figure 13. Top thirty enrich GO term of up and down-regulated genes. 51 Figure 14. Bodyweight of control and chemical sympathectomy mice. 52 Figure 15. Validation of expression patterns in the ileum of control mice. 53 Figure 16. The RNA expression level of nutrient absorption genes and immune response in the ileum of mice. 54 Figure 17. Verification of nutrient absorption genes in the duodenum of mice. 55 Figure 18. The RNA expression level of Mmp10 in the small intestine. 56 Figure 19. The RNA expression level of Nr1d1 in the small intestine. 57 Figure 20. The RNA expression level of Nfil3 in the small intestine. 58 Figure 21. The RNA expression level of mBmal in the small intestine. 59 Figure 22. The light-activated neurons presented in the SCN in wildtype mice. 60 Figure 23. The light-activated neurons show in the aVMH in wildtype mice. 61 Figure 24. Quantification of light-activated neurons in the SCN and the aVMH in wildtype mice. 62 Figure 25. The light-activated neurons show in the SCN in SF1-tdtomato mouse. 63 Figure 26. The light-activated neurons show in the aVMH in SF1-tdtomato mouse. 64 Figure 27. The number of activated neurons in SF1-tdtomato mouse in the aVMH. 65 Table 1. List of primer and annealing temperature for genotyping 66 Table 2. Gene Up-regulated after housed under dLAN for two weeks in padj. 67 Table 3. Gene down-regulated after housed under dLAN for two weeks in padj. 68 Table 4. Gene Up-regulated after housed under dLAN for two weeks in pval. 69 Table 5. Gene down-regulated after housed under dLAN for two weeks in pval.. 75 Table 6. Gene up-regulated after housed under dLAN condition for four weeks. 77 Table 7. Gene down-regulated after housed under dLAN condition for four weeks. 78 Appendix Abstract and posters 79 | |
| dc.language.iso | en | |
| dc.subject | 腸道菌 | zh_TW |
| dc.subject | 夜晚接受微弱光線 | zh_TW |
| dc.subject | 交感神經 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 小腸基因 | zh_TW |
| dc.subject | circadian clock | en |
| dc.subject | dLAN | en |
| dc.subject | sympathetic nervous | en |
| dc.subject | small intestine | en |
| dc.title | 夜晚光照影響腸道的基因表現 | zh_TW |
| dc.title | Exposure to light at night influences intestinal transcriptome pattern | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江皓森(Hao-Sen Chiang),周銘翊(Ming-Yi Chou),楊世斌(Shi-Bing Yang) | |
| dc.subject.keyword | 夜晚接受微弱光線,交感神經,生理時鐘,小腸基因,腸道菌, | zh_TW |
| dc.subject.keyword | dLAN,sympathetic nervous,circadian clock,small intestine, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202001038 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-06-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1806202013225600.pdf 未授權公開取用 | 5.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
