請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈弘俊(Horn-Jiunn Sheen) | |
| dc.contributor.author | Yen-Ju Huang | en |
| dc.contributor.author | 黃彥儒 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:44:29Z | - |
| dc.date.available | 2021-07-10T21:44:29Z | - |
| dc.date.copyright | 2020-08-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-16 | |
| dc.identifier.citation | 1. Terry, S. C.; Jerman, J. H.; Angell, J. B., GAS-CHROMATOGRAPHIC AIR ANALYZER FABRICATED ON A SILICON-WAFER. IEEE Trans. Electron Devices 1979, 26 (12), 1880-1886. 2. Manz, A.; Graber, N.; Widmer, H. M., MINIATURIZED TOTAL CHEMICAL-ANALYSIS SYSTEMS - A NOVEL CONCEPT FOR CHEMICAL SENSING. Sens. Actuator B-Chem. 1990, 1 (1-6), 244-248. 3. Xia, Y. N.; Whitesides, G. M., Soft lithography. Angew. Chem.-Int. Edit. 1998, 37 (5), 550-575. 4. McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts Chem. Res. 2002, 35 (7), 491-499. 5. Masters, B. R., Richard Zsigmondy and Henry Siedentopf’s Ultramicroscope. In Superresolution Optical Microscopy: The Quest for Enhanced Resolution and Contrast, Masters, B. R., Ed. Springer International Publishing: Cham, 2020; pp 165-172. 6. Voie, A. H.; Burns, D. H.; Spelman, F. A., ORTHOGONAL-PLANE FLUORESCENCE OPTICAL SECTIONING - 3-DIMENSIONAL IMAGING OF MACROSCOPIC BIOLOGICAL SPECIMENS. J. Microsc. 1993, 170, 229-236. 7. Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E. H. K., Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004, 305 (5686), 1007-1009. 8. Lavagnino, Z.; Zanacchi, F. C.; Diaspro, A., Selective Plane Illumination Microscopy (SPIM). In Encyclopedia of Biophysics, Roberts, G. C. K., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 2307-2308. 9. IF IMAGING: WIDEFIELD VERSUS CONFOCAL MICROSCOPY. https://www.ptglab.com/news/blog/if-imaging-widefield-versus-confocal-microscopy/ (accessed MAY 21). 10. Strobl, F.; Klees, S.; Stelzer, E. H. K., Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. J. Vis. Exp. 2017, (122), 17. 11. Keller, P. J.; Schmidt, A. D.; Wittbrodt, J.; Stelzer, E. H. K., Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science 2008, 322 (5904), 1065-1069. 12. Power, R. M.; Huisken, J., A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 2017, 14 (4), 360-373. 13. Turaga, D.; Matthys, O. B.; Hookway, T. A.; Joy, D. A.; Calvert, M.; McDevitt, T. C., Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. Tissue Eng. Part C-Methods, 9. 14. Valuchova, S.; Mikulkova, P.; Pecinkova, J.; Klimova, J.; Krumnikl, M.; Bainar, P.; Heckmann, S.; Tomancak, P.; Riha, K., Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife 2020, 9, 19. 15. Truong, T. V.; Supatto, W.; Koos, D. S.; Choi, J. M.; Fraser, S. E., Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 2011, 8 (9), 757-U102. 16. Wu, J. L.; Li, J. P.; Chan, R. K. Y., A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis. Opt. Express 2013, 21 (12), 14474-14480. 17. Regmi, R.; Mohan, K.; Mondal, P. P., MRT Letter: Light Sheet Based Imaging Flow Cytometry on a Microfluidic Platform. Microsc. Res. Tech. 2013, 76 (11), 1101-1107. 18. Deschout, H.; Raemdonck, K.; Stremersch, S.; Maoddi, P.; Mernier, G.; Renaud, P.; Jiguet, S.; Hendrix, A.; Bracke, M.; Van den Broecke, R.; Roding, M.; Rudemo, M.; Demeester, J.; De Smedt, S. C.; Strubbe, F.; Neyts, K.; Braeckmans, K., On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale 2014, 6 (3), 1741-1747. 19. Meddens, M. B. M.; Liu, S.; Finnegan, P. S.; Edwards, T. L.; James, C. D.; Lidke, K. A., Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed. Opt. Express 2016, 7 (6), 2219-2236. 20. Durnin, J., EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1987, 4 (4), 651-654. 21. Durnin, J.; Miceli, J. J.; Eberly, J. H., DIFFRACTION-FREE BEAMS. Phys. Rev. Lett. 1987, 58 (15), 1499-1501. 22. Durnin, J.; Miceli, J. J.; Eberly, J. H., COMPARISON OF BESSEL AND GAUSSIAN BEAMS. Opt. Lett. 1988, 13 (2), 79-80. 23. Turunen, J.; Vasara, A.; Friberg, A. T., HOLOGRAPHIC GENERATION OF DIFFRACTION-FREE BEAMS. Appl. Optics 1988, 27 (19), 3959-3962. 24. Indebetouw, G., NONDIFFRACTING OPTICAL-FIELDS - SOME REMARKS ON THEIR ANALYSIS AND SYNTHESIS. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1989, 6 (1), 150-152. 25. McCutchen, C. W., Generalized aperture and the three-dimensional diffraction image (vol 54, pg 240, 1964). J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2002, 19 (8), 1721-1721. 26. Lin, Y.; Seka, W.; Eberly, J. H.; Huang, H.; Brown, D. L., EXPERIMENTAL INVESTIGATION OF BESSEL BEAM CHARACTERISTICS. Appl. Optics 1992, 31 (15), 2708-2713. 27. Begasse, M.; Hyman, A., The First Cell Cycle of the Caenorhabditis elegans Embryo: Spatial and Temporal Control of an Asymmetric Cell Division. Results and problems in cell differentiation 2011, 53, 109-33. 28. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A., Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676-682. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77044 | - |
| dc.description.abstract | 胚胎發育生物學仰賴活體樣本的即時影像佐證,然而傳統螢光顯微術存在光漂白與光毒性的問題,使其不利於長時間的活體觀測。本研究整合層光螢光顯微術與微流體系統的優點,開發一套低光漂白、低光毒性及高解析度的高通量影像式流式細胞儀。 本實驗以層光系統與生物樣本的限制打造兼容兩者的微流道裝置。此微流道製程有於傳統實驗室晶片,以毛細管拉針的幾何外型製作二甲基矽氧烷(Polydimethylsiloxane, PDMS)模具,再以高分子材料MY-133-V2000進行二階段灌模固化製作出裝置本體。MY-133-V2000固化後的折射率與水相符,能配合光學鏡頭的工作環境,使光束於不同介質傳遞時不因介面折射率差異影響成像品質。 依樣品注入微流道的動力來源,可分為動力推進法及重力法。動力法雖可連續觀測樣本,但科儀相機曝光時間無法跟上樣品流速會使影像帶有嚴重地動態模糊。因此,本實驗將動力來源改以生物樣本自身重力進行實驗,達成連續觀測活體樣本之目的,獲得高解析度之秀麗隱感線蟲(C. elegans)胚胎的四維影像。本影像式流式細胞儀原型,成功地保有微流體系統的優點,同時避開傳統顯微術的缺點。 | zh_TW |
| dc.description.abstract | Embryonic developmental biology relies on real-time specimen images as their evidence, however, conventional fluorescence microscopy exhibits photobleaching and phototoxic effects, making it a second-choice candidate for long term live observations. By combining the benefits of light sheet fluorescence microscopy and microfluidic system, we establish a minimal photobleaching, low phototoxicity, high-resolution, and high-throughput image-based flow cytometry. This experiment designs a microfluidic device that can fit within the constraints of our light sheet system and the specimen. The fabrication process of this device is unique from traditional lab-on-chips, using the geometry of pulled capillary tubes to make polydimethylsiloxane (PDMS) molds, and use polymer material MY-133-V2000 two-step curing to create the device itself. Solidified MY-133-V2000 has the same refractive index as water, which can work in harmony with our objective lenses, alleviate image distortions result from light propagating through interfaces with the different refractive indexes. Sample can be propelled by either an active source or gravity. Though active source allows one to continuously observe samples, scientific camera scan lines may out-of-sync with sample flow rates, result in severe motion blur. Therefore, this experiment uses the specimen itself as weight source, reaching our final goal - continuous live specimen observation, acquiring high-resolution C. elegans embryo volumetric in situ images. Our image-based flow cytometry prototype successfully retains the strongholds of microfluidic systems while avoiding the weakness of traditional microscope systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:44:29Z (GMT). No. of bitstreams: 1 U0001-1607202011410300.pdf: 3616454 bytes, checksum: 219346a79eb4f98aa86f8b3b00a2ac36 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 符號目錄 x 第一章 導論 1 1.1 前言 1 1.2 研究背景與動機 2 第二章 文獻回顧 3 2.1 微流體系統 (Microfluidic System) 3 2.2 層光螢光顯微術 (Light Sheet Fluorescence Microscopy) 4 2.3 層光螢光顯微術應用於微流體系統 8 2.4 貝索光束 (Bessel Beams) 10 第三章 研究方法與系統設計 16 3.1 光學系統設計 16 3.2 微流體系統設計 17 3.3 微流體系統製程 20 3.3.1 絕氧固化系統設計 20 3.3.2 微流道模具建立 22 3.3.3 微流道成型 24 3.3.4 微流道後端製程 26 3.4 生物樣本製備 28 3.4.1 NGM plate 29 3.4.2 溶液配製 30 3.4.3 線蟲培養與同步 30 3.4.4 生物樣本完製 32 3.5 實驗方法與數據擷取 33 第四章 實驗結果與討論 35 4.1 層光特性檢測 35 4.2 生物樣本檢測 37 4.2.1 動力推進法 37 4.2.2 重力法 39 第五章 結論與未來展望 45 5.1 結論 45 5.2 未來展望 46 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 層光螢光顯微術 | zh_TW |
| dc.subject | 影像式流式細胞儀 | zh_TW |
| dc.subject | 微流體 | zh_TW |
| dc.subject | MY-133-V2000 | zh_TW |
| dc.subject | C. elegans | en |
| dc.subject | Light sheet fluorescence microscopy | en |
| dc.subject | MY-133-V2000 | en |
| dc.subject | microfluidics | en |
| dc.subject | image-based flow cytometry | en |
| dc.title | 層光螢光顯微術用於微流道影像式流式細胞技術之研究 | zh_TW |
| dc.title | Microfluidic-Imaging Flow Cytometry using Light Sheet Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳壁彰(Bi-Chang Chen),吳光鐘(Kuang-Chong Wu) | |
| dc.contributor.oralexamcommittee | 范育睿(Yu-Jui Fan),孟嘉祥(Chia-Hsiang Menq) | |
| dc.subject.keyword | 層光螢光顯微術,影像式流式細胞儀,微流體,秀麗隱桿線蟲,MY-133-V2000, | zh_TW |
| dc.subject.keyword | Light sheet fluorescence microscopy,image-based flow cytometry,microfluidics,C. elegans,MY-133-V2000, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202001567 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1607202011410300.pdf 未授權公開取用 | 3.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
