Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻(Chih-Hung Chen)
dc.contributor.authorWei-Hsuan Wuen
dc.contributor.author吳維軒zh_TW
dc.date.accessioned2021-07-10T21:43:51Z-
dc.date.available2021-07-10T21:43:51Z-
dc.date.copyright2020-09-14
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, “Lithium metal anodes for rechargeable batteries,” 2014.
[2] C. J. Northcott and M. B. Stein, “Panic disorder in pregnancy,” Journal of Clinical Psychiatry, 1994.
[3] X. Q. Zhang, X. Chen, X. B. Cheng, B. Q. Li, X. Shen, C. Yan, J. Q. Huang, and Q. Zhang, “Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes,” Angewandte Chemie - International Edition, 2018.
[4] A. C. T. V. Duin, S. Dasgupta, and F. Lorant, “ReaxFF,” 2001.
[5] X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, and Q. Zhang, “Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries,” Advanced Functional Materials, 2017.
[6] X. Chen, X.-Q. Zhang, H.-R. Li, and Q. Zhang, “CationSolvent, CationAnion, and SolventSolvent Interactions with Electrolyte Solvation in Lithium Batteries,” Batteries Supercaps, 2019.
[7] T. Hou, G. Yang, N. N. Rajput, J. Self, S.W. Park, J. Nanda, and K. A. Persson, “The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation,” Nano Energy, 2019.
[8] J. E. Mueller, A. C. Van Duin, and W. A. Goddard, “Development and validation of reaxff reactive force field for hydrocarbon chemistry catalyzed by nickel,” Journal of Physical Chemistry C, 2010.
[9] M. M. Islam, V. S. Bryantsev, and A. C. T. van Duin, “ReaxFF Reactive Force Field Simulations on the Influence of Teflon on Electrolyte Decomposition during Li/SWCNT Anode Discharge in Lithium-Sulfur Batteries,” Journal of The Electrochemical Society, 2014.
[10] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journalof Computational Physics, 1995.
[11] L. Martinez, R. Andrade, E. G. Birgin, and J. M.Mart´ınez, “PACKMOL: A package for building initial configurations for molecular dynamics simulations,” Journal of Computational Chemistry, 2009.
[12] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool,” Modelling Simul. Mater. Sci. Eng., 2010.
[13] S. P. Kim, A. C. Duin, and V. B. Shenoy, “Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study,” Journal of Power Sources, 2011.
[14] B. Mercer, E. Zywicz, and P. Papadopoulos, “A molecular dynamics-based analysis of the influence of strain-rate and temperature on the mechanical strength of PPTA crystallites,” Polymer, 2017.
[15] M. Q. Chen, S. S. Quek, Z. D. Sha, C. H. Chiu, Q. X. Pei, and Y.W. Zhang, “Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study,” Carbon, 2015.
[16] J. Li, J. Zhao, P. Ren, H. Dong, B. Meng, and S. Hu, “Effects of temperature, strain rate and molecule length on the deformation of graphene/polyethylene composites: A molecular dynamics simulation,” Chemical Physics Letters, 2019.
[17] M. M. Islam, A. Ostadhossein, O. Borodin, A. T. Yeates, W. W. Tipton, R. G. Hennig, N. Kumar, and A. C. Van Duin, “ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials,” Physical Chemistry Chemical Physics, 2015.
[18] L. Chang, C. Y. Zhou, L. L. Wen, J. Li, and X. H. He, “Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire,” Computational Materials Science, 2017.
[19] K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, and K. J. Stevenson, “The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes,” Chemistry of Materials, 2015.
[20] K. S. Yun, S. J. Pai, B. C. Yeo, K. R. Lee, S. J. Kim, and S. S. Han, “Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field,” Journal of Physical Chemistry Letters, 2017.
[21] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, “The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling,” 2016.
[22] X. Q. Zhang, X. Chen, L. P. Hou, B. Q. Li, X. B. Cheng, J. Q. Huang, and Q. Zhang, “Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries,” ACS Energy Letters, 2019.
[23] C. Wan, M. Y. Hu, O. Borodin, J. Qian, Z. Qin, J. G. Zhang, and J. Z. Hu, “Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes,” Journal of Power Sources, 2016.
[24] K. Xu, Y. Lam, S. S. Zhang, T. R. Jow, and T. B. Curtis, “Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry,” Journal of Physical Chemistry C, 2007.
[25] Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, and S. Jiao, “Enabling High-Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte,” Angewandte Chemie, 2020.
[26] Y. Zhang, Y. Zhong, S. Liang, B. Wang, X. Chen, and H. Wang, “Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases,” ACS Materials Letters, 2019.
[27] C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, and Q. Zhang, “Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains
High-Voltage Lithium Metal Batteries,” Angewandte Chemie - International Edition, 2018.
[28] G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, and D. Wang, “Organosulfideplasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries,” Nature Communications, 2017.
[29] D. Wang, G. Li, Q. Huang, X. He, Y. Gao, D. Wang, and S. H. Kim, “Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries,” ACS Nano, 2018.
[30] F. Liu, Q. Xiao, H. B. Wu, L. Shen, D. Xu, M. Cai, and Y. Lu, “Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes,” Advanced Energy Materials, 2018.
[31] Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, and Q. H. Yang, “Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte,” Advanced Materials, 2017.
[32] P. Dou, Z. Cao, J. Zheng, C. Wang, and X. Xu, “Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithiumion battery anodes,” Journal of Alloys and Compounds, 2016.
[33] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, and C.Wang, “Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries,” Chem, 2018.
[34] G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang, and L. Chen, “LiFSI to improve lithium deposition in carbonate electrolyte,” Energy Storage Materials, 2019.
[35] S. J. Kang, K. Park, S. H. Park, and H. Lee, “Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries,” Electrochimica Acta, 2018.
[36] Y.-G. Lee, S. Fujiki, and C. Jung, “High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes,” Nature Energy, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77028-
dc.description.abstract鋰金屬電池與現今被廣泛地使用在3C產品上的鋰離子電池不同的地方在於將電池中的負極材料由石墨轉換為能夠提供更高能量的鋰金屬,因此理論上相較於鋰離子電池能夠提高2∼5倍的能量密度。然而,鋰金屬電池至今仍未商業化的關鍵點在於電池反覆充放電時鋰在負極表面上的不均勻沈積。此種現象將會嚴重影響電池中固態電解質界面(Solid Electrolyte Interphase, SEI)的穩定性,導致在負極表面上會產生樹枝狀的枝晶(dendrite),甚至可能造成電池內部短路而有爆炸的危險。現今鋰離子電池經常使用碳酸乙烯酯(ethylene carbonate, EC)和碳酸二乙酯(diethyl carbonate, DEC)作為電池內部的電解液系統,但是當我們將此電解液系統沿用在鋰金屬電池上會發現電池的固態電解質界面並不穩定,因此找尋適用於鋰金屬電池的電解液系統成為了迫切的問題。近年來,有研究團隊發現當電解液系統中含有氟代碳酸乙烯酯(fluoroethylene carbonate, FEC)與硝酸鋰(lithium nitrate, LiNO3)能使電池在充放電過程中形成穩定的固態電解質界面,進而有效地抑制枝晶的生長。本論文使用能夠考慮化學反應的反應力場(Reactive Force Field, ReaxFF)模擬固態電介質界面(SEI)在傳統EC/DEC、EC/DEC/LiNO3、EC/DMC/LiNO3以及FEC/DMC/LiNO3此四種不同的電解液系統中之生成情形,並且將四種樣本分為前二與後二兩組以便有效地研究LiNO3與FEC如何個別影響固態電解質界面的機械穩定度。我們針對這四種固態電解質界面(SEI)分別進行拉伸試驗並量測其韌性值來驗證電解液系統中的成份與固態電解質界面的材料行為之間確實存在著關聯性。經過模擬結果顯示加入LiNO3添加物將會使得所生成之固態電解質界面具有更多有機物成份,使其延展性提升。而若是將電解液系統中之EC分子替換為FEC分子將能夠同時提升固態電解質界面有機物與無機物之成份,使其機械強度與延展性獲得大幅提升。本論文提供了一個新觀點來探討鋰金屬電池內固態電解質界面的機械穩定度與其對於枝晶生長的抑制機制。zh_TW
dc.description.abstractWhen choosing lithium metal as the anode material instead of graphite, the lithium metal batteries have in theory 2∼5 times energy density of today’s widely used lithium ion batteries. However, the lithium deposition in lithium metal batteries is often nonuniform during cycles, which could affect the stability of the Solid Electrolyte Interphase (SEI), leading to the growth of dendrites or even a short circuit. The formation of the SEI layer is unstable in the ethylene carbonate (EC) and diethyl carbonate (DEC) electrolyte, which is one of the often-used electrolyte systems in today’s lithium ion batteries. Recent experiments found that the formulation of electrolyte containing fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) can effectively inhibit dendrite growth during cycling and this is attributed to the improvement of the mechanical strength and flexibility of the SEI layer. This study uses reactive MD simulations to investigate the formation of the SEI layer in four kinds of electrolyte systems including conventional EC/DEC electrolyte, EC/DEC/LiNO3, EC/DMC/LiNO3 and FEC/DMC/LiNO3. From the first two and latter two formulations, we want to find out how LiNO3 and FEC influence the mechanical stability of SEI respectively. We impose tensile test on these SEI layers and measure their toughness to show that there is a relation between the electrolyte components and the mechanical behavior of the SEI layers. We find out that adding LiNO3 additives could generate more organic species in SEI and thus increases its ductility. Also, when we change EC molecules into FEC in the electrolyte system could generate more organic and inorganic species in SEI at the same time and increases both mechanical strength and ductility. This study provides insight into the mechanical stability of the SEI layer and the suppression mechanism of dendrite formation in lithium metal batteries.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:51Z (GMT). No. of bitstreams: 1
U0001-2107202014151900.pdf: 11871486 bytes, checksum: 7a43d9656a7b2fe768777497e8f19493 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract ii
圖目錄 v
表目錄 x
第一章、緒論 1
1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第二章、研究方法與模擬流程 6
2.1 分子動力學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 反應力場(ReaxFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ReaxFF-鍵結能量(bonded energy) . . . . . . . . . . . . . . . . . . . . 10
2.3.1 鍵結能量-Ebond . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 鍵角能量-Eval . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 扭矩能量-Etors . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 ReaxFF-非鍵結能量(non-bonded energy) . . . . . . . . . . . . . . . . 12
2.4.1 孤電子對能量-Elp . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 過配位能量-Eover . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 低配位能量-Eunder . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 凡得瓦能量-EvdW aals . . . . . . . . . . . . . . . . . . . . . . 14
2.4.5 庫倫能量-Ecoulomb . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 LAMMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 模擬模型與流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
第三章、結果分析與討論 22
3.1 固態電解質界面之生成反應 . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 鋰(Li)、氟化鋰(LiF)以及氧化鋰(Li2O)之拉伸試驗 . . . . . . . . . . . 24
3.3 固態電解質界面之拉伸試驗 . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 各層固態電解質界面 . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 不同電解液系統之固態電解質界面 . . . . . . . . . . . . . . . 28
3.4 溶劑殼(Solvation Shell)效應 . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 應變速率(ε ̇)對於拉伸試驗之影響 . . . . . . . . . . . . . . . . . . . 40
3.5.1 單層固態電解質界面 . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 整體固態電解質界面 . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 固態電解質界面之韌性計算 . . . . . . . . . . . . . . . . . . . . . . . 43
第四章、結論與未來展望 46
4.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
附錄 49
參考文獻 57
dc.language.isozh-TW
dc.title利用分子動力學研究鋰金屬電池中固態電解質界面之機械性質zh_TW
dc.titleMolecular Dynamics Study of the Mechanical Behavior of Solid Electrolyte Interphase in Lithium Metal Batteriesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳國慶(Kuo-Ching Chen),包淳偉(Chun-Wei Pao),周佳靚(Chia-Ching Chou)
dc.subject.keyword鋰金屬電池,枝晶,固態電解質界面,拉伸試驗,韌性,zh_TW
dc.subject.keywordlithium metal battery,dendrite,SEI,tensile test,toughness,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202001689
dc.rights.note未授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-2107202014151900.pdf
  目前未授權公開取用
11.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved