請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77020完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡皇龍(Huang-Lung Tsai) | |
| dc.contributor.author | Xun-Xian Huang | en |
| dc.contributor.author | 黃薰仙 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:35Z | - |
| dc.date.available | 2021-07-10T21:43:35Z | - |
| dc.date.copyright | 2020-07-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-23 | |
| dc.identifier.citation | Adams, S., Manfield, I., Stockley, P., and Carré, I.A. (2015). Revised morning loops of the Arabidopsis circadian clock based on analyses of direct regulatory interactions. PLoS One 10, e0143943. Anderson, J.M., Chow, W.S., and Park, Y.-I. (1995). The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynthesis Research 46, 129-139. Carré, I., and Veflingstad, S.R. (2013). Emerging design principles in the Arabidopsis circadian clock. In Seminars in Cell Developmental Biology (Elsevier), pp. 393-398. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743. Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P.S., Rothenberg, M.E., Leyrat, A.A., Sim, S., Okamoto, J., Johnston, D.M., and Qian, D. (2011). Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nature Biotechnology 29, 1120. de Mairan, J.-J. (1729). Observation botanique. Histoire de l'Académie Royale des Sciences Paris. Dowson‐Day, M.J., and Millar, A.J. (1999). Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. The Plant Journal 17, 63-71. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal 18, 4679-4688. Fujiwara, S., Sakamoto, S., Kigoshi, K., Suzuki, K., and Ohme-Takagi, M. (2014). VP16 fusion induces the multiple-knockout phenotype of redundant transcriptional repressors partly by Med25-independent mechanisms in Arabidopsis. FEBS Letters 588, 3665-3672. Hecker, A., Brand, L.H., Peter, S., Simoncello, N., Kilian, J., Harter, K., Gaudin, V., and Wanke, D. (2015). The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs. Plant Physiology 168, 1013-1024. Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 97, 9789-9794. Inoue, K., Araki, T., and Endo, M. (2018). Circadian clock during plant development. Journal of Plant Research 131, 59-66. Johansson, M., and Köster, T. (2019). On the move through time – a historical review of plant clock research. Plant Biology 21, 13-20. Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N. (2016). Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED 1 in Arabidopsis circadian clock. The Plant Cell 28, 696-711. Kooiker, M., Airoldi, C.A., Losa, A., Manzotti, P.S., Finzi, L., Kater, M.M., and Colombo, L. (2005). BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. The Plant Cell 17, 722-729. Lee, C.-M., Li, M.-W., Feke, A., Liu, W., Saffer, A.M., and Gendron, J.M. (2019). GIGANTEA recruits the UBP12 and UBP13 deubiquitylases to regulate accumulation of the ZTL photoreceptor complex. Nature Communications 10, 1-10. Lu, S.X., Webb, C.J., Knowles, S.M., Kim, S.H., Wang, Z., and Tobin, E.M. (2012). CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiology 158, 1079-1088. McClung, C.R. (2006). Plant Circadian Rhythms. The Plant Cell 18, 792–803. Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. The Plant Journal 37, 426-438. Michael, T.P., Salome, P.A., Hannah, J.Y., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049-1053. Millar, A.J., Straume, M., Chory, J., Chua, N.-H., and Kay, S.A. (1995). The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163-1166. Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I.A., and Coupland, G. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell 2, 629-641. Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Fowler, S., Kamada, H., and Putterill, J. (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell 17, 2255-2270. Monfared, M.M., Simon, M.K., Meister, R.J., Roig‐Villanova, I., Kooiker, M., Colombo, L., Fletcher, J.C., and Gasser, C.S. (2011). Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. The Plant Journal 66, 1020-1031. Nohales, M.A., and Kay, S.A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural Molecular Biology 23, 1061. Pandey, S., and Sahoo, D. (2019). Identification of gene expression logical invariants in Arabidopsis. Plant Direct 3, e00123. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582. Pittendrigh, C.S. (1954). On temperature independence in the clock system controlling emergence time in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 40, 1018. Plautz, J.D., Straume, M., Stanewsky, R., Jamison, C.F., Brandes, C., Dowse, H.B., Hall, J.C., and Kay, S.A. (1997). Quantitative analysis of Drosophila period gene transcription in living animals. Journal of Biological Rhythms 12, 204-217. Ruts, T., Matsubara, S., Wiese-Klinkenberg, A., and Walter, A. (2012). Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana. The Plant Journal 72, 154-161. Salomé, P.A., and McClung, C.R. (2005). PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. The Plant Cell 17, 791-803. Sanchez, A., Shin, J., and Davis, S.J. (2011). Abiotic stress and the plant circadian clock. Plant Signaling Behavior 6, 223-231. Sawa, M., and Kay, S.A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 108, 11698-11703. Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences 24, 181-185. Theune, M.L., Bloss, U., Brand, L.H., Ladwig, F., and Wanke, D. (2019). Phylogenetic analyses and GAGA-motif binding studies of BBR/BPC proteins lend to clues in GAGA-motif recognition and a regulatory role in brassinosteroid signaling. Frontiers in Plant Science 10, 466. Toda, Y., Kudo, T., Kinoshita, T., and Nakamichi, N. (2019). Evolutionary insight into the clock-associated PRR5 transcriptional network of flowering plants. Scientific Reports 9, 1-14. Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., and Ferrell, J.E., Jr. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126-129. Wang, Y., Wu, J.F., Nakamichi, N., Sakakibara, H., Nam, H.G., and Wu, S.H. (2011). LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. The Plant Cell 23, 486-498. Wang, Z.-Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217. Wang, Z.-Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S., and Tobin, E.M. (1997). A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. The Plant Cell 9, 491-507. Wu, H.-Y., Liu, K.-H., Wang, Y.-C., Wu, J.-F., Chiu, W.-L., Chen, C.-Y., Wu, S.-H., Sheen, J., and Lai, E.-M. (2014). AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10, 19. Wu, J.-F., Wang, Y., and Wu, S.-H. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiology 148, 948-959. Wu, J.-F., Tsai, H.-L., Joanito, I., Wu, Y.-C., Chang, C.-W., Li, Y.-H., Wang, Y., Hong, J.C., Chu, J.-W., and Hsu, C.-P. (2016). LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nature Communications 7, 1-10. Xie, Q., Wang, P., Liu, X., Yuan, L., Wang, L., Zhang, C., Li, Y., Xing, H., Zhi, L., and Yue, Z. (2014). LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. The Plant Cell 26, 2843-2857. Yu, J.-W., Rubio, V., Lee, N.-Y., Bai, S., Lee, S.-Y., Kim, S.-S., Liu, L., Zhang, Y., Irigoyen, M.L., and Sullivan, J.A. (2008). COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular Cell 32, 617-630. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760. Zuo, J., Niu, Q.W., and Chua, N.H. (2000). An estrogen receptor‐based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24, 265-273. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77020 | - |
| dc.description.abstract | 生理時鐘 (circadian clock) 是一種內生性計時器,它使生物體內的各種生理過程,包含新陳代謝及生理行為與外界晝夜變化同步,確保能隨著晝夜週期規律振盪,進而幫助生物體能在環境中有最好的適應性。植物個體無法遷徙躲避逆境,當遭逢突發的環境變化時會觸發必要的因應機制,可能影響原本的生理節律,在危機解除時,生理時鐘便可幫助改變的節律回歸原本的週期。阿拉伯芥中,植物特有的GAGA序列結合因子 (GAGA-motif binding factor) BASIC PENTACYSTEINE(BPC)基因家族參與了由晝夜節律控制的各種生理過程,包括根生長、下胚軸延長和生殖器官的形成。儘管如此,這些BPC轉錄因子在真核生物晝夜節律振盪系統中的作用卻未被研究。由於BPC的結合序列在多個時鐘基因的上游調節區域可被找到,我們欲在本研究中檢視BPC家族是否參與晝夜節律的調控。生理時鐘由一群具相互回饋調控關係的基因環環相扣而成。CIRCADIAN CLOCK ASSOCIATED 1(CCA1)是第一個被發現的時鐘基因,其表現形式常做為生理時鐘核心振盪系統 (core oscillator system) 運行的指標,我們於攜帶CCA1啟動子::冷光素酶報導基因的轉植株,分別誘導BPC家族不同成員的過量表現,檢測各BPC成員在植物細胞中對CCA1啟動子的作用,共檢測了第一類和第二類BPC亞家族成員。我們發現當誘導第一類的BPC3或第二類的BPC4及BPC6過量表現時,CCA1啟動子的活性明顯地受到抑制,而第一類BPC1、BPC2並未顯著改變CCA1啟動子的表現模式。儘管先前關於阿拉伯芥BPC基因家族的遺傳研究已經揭示了BPC3和BPC6之間的拮抗作用,我們發現BPC3、BPC4和BPC6對生理時鐘運行有類似的抑制功能。 | zh_TW |
| dc.description.abstract | Circadian clock is an endogenous timekeeper that synchronizes various physiological processes in planta to oscillate upon the day-night cycle. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), the first identified clock regulator among those genes interlocked by regulatory feedback loops of the circadian clock. The regulatory role of CCA1 in the core oscillator system makes this gene a decent example for revealing features of circadian clock operation. In Arabidopsis, the plant-specific GAGA-motif binding factor, BASIC PENTACYSTEINE (BPC) family, involves in various physiological processes those controlled by the circadian clock, including root growth, hypocotyl elongation and reproductive organ formation. Nevertheless, the roles of these BPCs in the eukaryotic circadian oscillator are still elusive. Upon that putative BPC-binding sites were identified at upstream regulatory regions of multiple clock genes, our study aimed at examining the role of BPC in the regulation of the circadian clock. Functional assays for BPC members of two subfamilies class I and class II were conducted by the induction of BPC ectopic expression in the transgenic line carrying promoter::luciferase construct of CCA1. We found that the induction of class I BPC3 or class II BPC4, BPC6 ectopic expression, significantly suppressed the activity of CCA1 promoter. Although, class I BPC1 and BPC2 did not notably alter the expression profile of CCA1 promoter. Even though the antagonistic function between BPC3 and BPC6 has been revealed by a previous genetic study on the BPC family. Our results indicated that BPC3, BPC4 and BPC6 have similar molecular functions for the negative regulation of the circadian clock. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:35Z (GMT). No. of bitstreams: 1 U0001-2207202015254000.pdf: 4122223 bytes, checksum: 4b98cfaf43bbef62c8527a3736af1cfe (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv Introduction 1 The circadian clock functions on plant developmental rhythms 1 Arabidopsis circadian clock is an oscillating gene network 2 Activation of clock gene requires transcriptional coactivators 3 Multiple BPCs are coexpressed with LWD1 3 Materials and Methods 6 Plant material and growth conditions 6 Agrobacterium strain and plasmid vector 7 Agrobacterium-mediated transformation of Arabidopsis thaliana (floral dip) 8 Transgenic plants selection 9 Bioluminescent assays and circadian rhythm analysis 9 XVE induction 10 Western blot detection 11 Reverse-transcription 16 Real-time quantitative PCR (RT-qPCR) 17 Chromatin immunoprecipitation (ChIP) assay 18 Results 21 BPC4 and LWD1 are positively correlated 21 The inducible system for BPC ectopic expression in Arabidopsis is adapted 21 The pre-tests of BPCs-EYFP-3HA binary constructs were conducted 22 The induction effects of BPC ectopic expression on CCA1 promoter 24 GAGA-motif exists in genome broadly 26 Discussion 28 Figures 31 References 53 | |
| dc.language.iso | en | |
| dc.subject | BASIC PENTACYSTEINE (BPC) | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 生物冷光測定 | zh_TW |
| dc.subject | CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) | zh_TW |
| dc.subject | BASIC PENTACYSTEINE (BPC) | en |
| dc.subject | bioluminescence | en |
| dc.subject | CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) | en |
| dc.subject | circadian clock | en |
| dc.title | 阿拉伯芥BPC家族參與晝夜節律調控之基因功能研究 | zh_TW |
| dc.title | Functional study on BPC family members for circadian clock regulation in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林盈仲(Ying-Chung Lin),林信宏(Hsin-Hung Lin) | |
| dc.subject.keyword | 生理時鐘,BASIC PENTACYSTEINE (BPC),CIRCADIAN CLOCK ASSOCIATED 1 (CCA1),生物冷光測定, | zh_TW |
| dc.subject.keyword | circadian clock,BASIC PENTACYSTEINE (BPC),CIRCADIAN CLOCK ASSOCIATED 1 (CCA1),bioluminescence, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202001739 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202015254000.pdf 未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
