Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊(Horn-Jiunn Sheen)
dc.contributor.authorYu-Lin Changen
dc.contributor.author張昱霖zh_TW
dc.date.accessioned2021-07-10T21:43:23Z-
dc.date.available2021-07-10T21:43:23Z-
dc.date.copyright2020-07-31
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation[1] Abhay Vishnoi., Amit Saxena and Aman Bhatia., 'Biochip-a review on cutting-edge biochip technology,' International Journal of Scientific Research and Management Studies, vol. 2, no. 10, pp. 405-411, 2014.
[2] Terry, S.C., J.H. Jerman and J.B. Angell, 'A gas chromatographic air analyzer fabricated on a silicon wafer,' Electron Devices, IEEE Transactions, vol. 12, no. 12, pp. 1880-1886, 1979.
[3] Manz, A., N. Graber and H.á. Widmer, 'Miniaturized total chemical analysis systems: a novel concept for chemical sensing,' Sensors and actuators B: Chemical, vol. 1, no. 1, pp. 244-248, 1990.
[4] Xia, Y. and G.M. Whitesides, 'Soft lithography,' Annual review of materials science, vol. 28, no. 1, pp. 153-184, 1998.
[5] J. Cooper McDonald, Steven J. Metallo and George M. Whitesides, 'Fabrication of a Configurable, Single-Use,' Anal. Chem., vol. 73, pp. 5645-5650, 2001.
[6] McDonald, J.C and G. W. , 'Poly(dimethylsiloxane) as a meterial for fabricating microfluidic devices,' Accounts of chemical research, vol. 7, pp. 491-499, 2002.
[7] D. Dey and T. Goswami, 'Optical Biosensors: A Revolution Towards Quantum,' Journal of Biomedicine and Biotechnology, 2011.
[8] D. Grieshaber, R. MacKenzie, J. Voeroes and E. Reimhult, 'Electrochemical biosensors-sensor principles and architectures,' Sensors, vol. 8, no. 3, pp. 1400-1458, 2008.
[9] G. Marrazza, 'Piezoelectric biosensors for organophosphate and carbamate pesticides: a review,' Biosensors, vol. 4, no. 3, pp. 301-307, 2014.
[10] Tan, W., Y. Huang, T. Nan, C. Xue, Z. Li, Q. Zhang and B. Wang, 'Development of protein A functionalized microcantilever immunosensors for the analyses of small molecules at parts per trillion levels,' Anal Chem, vol. 82, no. 2, pp. 615-620, 2010.
[11] R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, 'Surface-Plasmon Resonance Effect in Grating Diffraction,' Phys. Rev. Lett., vol. 21, no. 22-25, p. 1530, 25 11 1968.
[12] Homola, J., S.S. Yee and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 3-5, 25 1 1999.
[13] R.D. Vaughan, C.K. O’Sullivan and G.G. Guilbault, 'Development of a quartz crystal microbalance (QCM) immunosensorfor the detection ofListeria monocytogenes,' Enzyme and Microbial Technoly, vol. 29, no. 10, pp. 635-638, 12 2001.
[14] Gengfeng Zheng, Fernando Patolsky, Yi CuI, Wayne U Wang and Charles M Lieber, 'Multiplexed electrical detection of cancer markers withnanowire sensor arrays,' Nature Biotechnology volume, vol. 23, pp. 1294-1301, 2005.
[15] Byoungsok Jung, Rajiv Bharadwaj and Juan G. Santiago, 'On-Chip Millionfold Sample Stacking UsingTransient Isotachophoresis,' Analytical Chemistry, vol. 78, pp. 2319-2327, 2006.
[16] Byoungsok Jung, Rajiv Bharadwaj and Juan G. Santiago, 'Thousandfold signal increase using field-amplifiedsample stacking for on-chip electrophoresis,' Electrophoresis, vol. 24, pp. 3476-3483, 2003.
[17] Joselito P. Quirino and Shigeru Terab, 'Exceeding 5000-FoldConcentration of DiluteAnalytes in MicellarElectrokinetic Chromatography,' Science, vol. 282, no. 5388, pp. 465-468, 1998.
[18] Joselito P. Quirino and Shigeru Terabe, 'On-line concentration of neutral analytes for micellar electrokineticchromatographyIV. Field-enhanced sample injection,' Journal of Chromatography A, vol. 798, no. 1-2, pp. 251-257, 1998.
[19] Ying-Chih Wang, Anna L. Stevens and Jongyoon Han, 'Million-fold Preconcentration of Proteins andPeptides by Nanofluidic Filter,' Anal. Chem., vol. 77, no. 14, pp. 4293-4299, 2005.
[20] Ali Mani, Thomas A. Zangle and Juan G. Santiago, 'On the Propagation of Concentration Polarization fromMicrochannel-Nanochannel Interfaces Part I: Analytical Model andCharacteristic Analysis,' Langmuir, vol. 25, no. 6, pp. 3898-3908, 2009.
[21] Qiaosheng Pu, Jongsin Yun, Henryk Temkin and Shaorong Liu, 'Ion-Enrichment and Ion-Depletion Effectof Nanochannel Structures,' Nano Letters, vol. 4, no. 6, pp. 1099-1103, 2004.
[22] S.S.Dukhin, 'Electrokinetic phenomena of the second kind and their applications,' Advances in Colloid and Interface Science, vol. 35, pp. 173-196, 1991.
[23] Sun Min Kim, Mark A. Burns and Ernest F. Hasselbrink, 'Electrokinetic Protein Preconcentration Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic,' Anal. Chem., vol. 78, pp. 4779-4785, 2006.
[24] Jeong Hoon Lee, Yong-Ak Song and Jongyoon Han, 'Multiplexed proteomic sample preconcentration device using,' Lab on a Chip, vol. 8, pp. 596-601, 2008.
[25] Sung Jae Kim, Yong-Ak Song and Jongyoon Han, 'Nanofluidic concentration devices for biomolecules utilizing ion,' Chem. Soc. Rev., vol. 39, pp. 912-922, 2010.
[26] Sung Hee Ko, Sung Jae Kim, Lih Feng Cheow, Leon D. Li, Kwan Hyoung Kang and Jongyoon Han, 'Massively parallel concentration device for multiplexed immunoassays,' Lab Chip, vol. 11, pp. 1351-1358, 2011.
[27] Sung Hee Ko, Yong-Ak Song, Sung Jae Kim, Myungji Kim, Jongyoon Han and Kwan Hyoung Kang, 'Nanofluidic preconcentration device in a straight microchannel using ion,' Lab Chip, vol. 12, pp. 4472-4482, 2012.
[28] Rahul Dhopeshwarkar, Dzmitry Hlushkou, Mark Nguyen, Ulrich Tallarek and Richard M. Crooks, 'Electrokinetics in Microfluidic Channels Containing a Floating Electrode,' J. Am. Chem. Soc., vol. 130, no. 32, pp. 10480-10481, 2008.
[29] Robbyn K. Anand, Eoin Sheridan, Kyle N. Knust and Richard M. Crooks, 'Bipolar Electrode Focusing: Faradaic Ion Concentration Polarization,' Anal. Chem., vol. 83, no. 6, pp. 2351-2358, 2011.
[30] Kyle N. Knust, Eoin Sheridan, Robbyn K. Anand and Richard M. Crooks, 'Dual-channel bipolar electrode focusing: simultaneous separation and,' Lab Chip, vol. 12, pp. 4107-4114, 2012.
[31] F. F. Reuss, Mem. Soc. Imp. Naturalistes Moscou, vol. 2, p. 327, 1807.
[32] N. David, 'High Performance Capillary Electrophoresis,' in An Introduction,Hewlett Packard Company, 1992.
[33] Baker and Dale R., Capillary electrophoresis, John Wiley Sons, Inc,, 1995.
[34] Helmholtz H., 'Studien über elektrische Grenzschichten.,' Ann. Phys., pp. 337-382, 1879.
[35] Gouy M.G., 'Sur la constitution de la charge electrique à la surface d’un electrolyte.,' J. Physique, vol. 9, pp. 457-468, 1910.
[36] Chapman D.L., 'A contribution to the theory of electrocapillarity.,' Philos. Mag., vol. 25, pp. 475-481, 1913.
[37] Stern O., 'Zur Theorie der elektrolytischen Doppelschicht.,' Z. Elektrochemie., vol. 30, p. 508–516, 1924.
[38] P.S. Chung, Y.J. Fan, H.J. Sheen and W.C. Tian, 'Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.,' Lab on a Chip, vol. 15, no. 1, pp. 319-330, 2015.
[39] J. Perrin and J. Phys, Chem., vol. 2, p. 607, 1904.
[40] I. Rubinstein and B. Zaltzman, 'Electro-osmotically induced convection at a permselective membrane,' Phys. Rev. E, vol. 62, p. 2238, 2000.
[41] Felix C. Leinweber and Ulrich Tallarek, 'Nonequilibrium Electrokinetic Effects in Beds of,' Langmuir, vol. 20, pp. 11637-11648, 2004.
[42] A. K. Sahu, S. Pitchumani, P. Sridhar and A. K. Shukla, 'Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview,' Bulletin of Materials Science, vol. 32, p. 285–294, 2009.
[43] M-E Vlachopoulou, A Tserepi, P Pavl, P Argitis, M Sanopoulou and K Misiakos, 'A low temperature surface modificationassisted method for bonding plasticsubstrates,' J. Micromech. Microeng, vol. 19, no. 1, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77014-
dc.description.abstract本研究對電驅動奈米流體所產生之離子濃度極化現象 (Ion concentration polarization, ICP)及電驅動嵌入性雙極電極所產生之法拉第離子濃度極化現象 (Faradaic Ion concentration polarization, FICP)進行一系列探討與應用,最終成功開發出電驅動嵌入性雙極電極微米平行化多流道濃縮晶片。
首先利用SU8系列光阻與軟微影技術製作出微米流道之矽晶圓母模,再利用聚二甲基矽氧烷 (Polydimethylsiloxane, PDMS)翻模出微米流道,並將Nafion作為離子選擇性薄膜 (Ion-selective membrane)鋪設在玻璃基板上;金薄膜作為雙極電極鋪設在PC基板上,最後經由APTES修飾與氧電漿表面改質將PDMS分別與玻璃基板和PC基板接合完成濃縮晶片。
本研究使用鈣黃綠素 (Calcein)螢光分子作為示蹤劑使濃縮效果可視化,並分別利用電驅動奈米流體濃縮技術 (Electrically driven nanofluidic concentration)與電驅動嵌入性雙極電極濃縮技術 (Electrically driven concentrating of embedded bipolar electrode)結合微米平行化多流道晶片。本研究分為兩大部分:第一部分利用相同長度平行化多流道濃縮晶片做測試,使用兩種濃縮技術探討濃縮結果,並比較主流道與緩衝溶液流道間距,還有流道尺寸對濃縮效果之影響,且利用影像處理軟體做螢光強度分析;另一部分是利用不同長度平行化多流道濃縮晶片做測試,比較有無緩衝溶液流道與流道尺寸對濃縮效果之影響,再利用影像處理軟體做螢光強度分析,並探討不同驅動電壓對空乏區大小之影響。
綜觀而言,本研究成功利用電驅動嵌入性雙極電極濃縮技術結合了兩種平行化多流道,製作出快速製程之微米平行化多流道濃縮晶片。
zh_TW
dc.description.abstractIn this study, we demonstrate a series of discussions and applications on the ion concentration polarization (ICP)phenomenon produced by electrically driven nanofluidic and the Faradaic ion concentration polarization phenomenon (FICP) produced by electrically driven embedded bipolar electrodes. In the end, we successfully developed an electrically driven embedded bipolar electrode micron parallelized multi-channel concentrated chip with polydimethylsiloxane (PDMS).
Calcein fluorescent molecules were used as a tracer to visualize the concentration effect, either the electrically driven nanofluidic concentration technology or the electrically driven embedded bipolar electrode concentration technology were combined with micron parallelized multi-channel chips. This research is divided into two parts. The first part uses the same length parallelized multi-channel concentration chip for testing. The concentration effect of two different concentration technologies, the spacing between the main channel and the buffer solution channel, and the size of channels are discussed. Then use image processing software to do fluorescence intensity analysis. The second part uses the various length parallelized multi-channel concentration chip for testing. The concentration effect of presence or absence of buffer solution microchannel and channel size are discussed. Also, the result of fluorescence intensity was analyzed by image processing software.
In summary, this study successfully used an electrically driven embedded bipolar electrode concentration technology to combine two parallelized multi-channels to produce a micron parallelized multi-channel concentration chip with a fast process.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:23Z (GMT). No. of bitstreams: 1
U0001-2307202016371500.pdf: 4718505 bytes, checksum: 468ee4147e28534bda7bf77b362fb720 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 XII
第一章 導論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法 2
1.4 論文架構 2
第二章 文獻回顧 3
2.1 生物晶片 (BIO-CHIP) 3
2.2 生物檢測技術 5
2.3 預濃縮技術 6
第三章 實驗原理 17
3.1 電泳 17
3.2 電雙層 18
3.3 電滲流 21
3.4 離子濃度極化 22
3.5 預濃縮晶片之原理 24
第四章 實驗設備架設與實驗方法 29
4.1 濃縮晶片之設計與製程 29
4.2 儀器架設 40
第五章 實驗結果與討論 43
5.1 實驗方法 43
5.2 實驗結果 44
第六章 結論與未來展望 64
6.1 結論 64
6.2 未來展望 65
dc.language.isozh-TW
dc.subject嵌入性雙極電極濃縮zh_TW
dc.subject法拉第離子濃度極化zh_TW
dc.subject平行化微流道zh_TW
dc.subject奈米流體濃縮zh_TW
dc.subject離子濃度極化zh_TW
dc.subjectnanofluidic concentrationen
dc.subjection concentration polarizationen
dc.subjectfaradaic ion concentration polarizationen
dc.subjectbipolar electrode concentrationen
dc.subjectparallel microchannelen
dc.title離子濃度極化現象應用於微流道之研究zh_TW
dc.titleInvestigation of ion concentration polarization phenomenon in micro-channel devicesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor魏培坤(Pei-Kuen Wei)
dc.contributor.oralexamcommittee盧彥文(Yen-Wen Lu),范育睿(Yu-Jui Fan)
dc.subject.keyword奈米流體濃縮,嵌入性雙極電極濃縮,離子濃度極化,法拉第離子濃度極化,平行化微流道,zh_TW
dc.subject.keywordnanofluidic concentration,bipolar electrode concentration,ion concentration polarization,faradaic ion concentration polarization,parallel microchannel,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202001792
dc.rights.note未授權
dc.date.accepted2020-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-2307202016371500.pdf
  未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved