請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77013完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Ssu-Ying Chen | en |
| dc.contributor.author | 陳思穎 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:21Z | - |
| dc.date.available | 2021-07-10T21:43:21Z | - |
| dc.date.copyright | 2020-08-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 1. Adzreil, B., et al., The effectiveness of combined tonsillectomy and anterior palatoplasty in the treatment of snoring and obstructive sleep apnoea (OSA). European Archives of Oto-Rhino-Laryngology, 2017. 274(4): p. 2005-2011. 2. ; Available from: https://www.tuck.com/how-to-stop-snoring/. 3. Wessolleck, E., et al., Intraoral electrical muscle stimulation in the treatment of snoring. Somnologie, 2018. 22(2): p. 47-52. 4. Salah, Y., et al., Study of Demarcation Line Depth in Transepithelial versus Epithelium-Off Accelerated Cross-Linking (AXL) in Keratoconus. Journal of ophthalmology, 2019. 2019. 5. Raiskup, F. and E. Spoerl, Corneal crosslinking with riboflavin and ultraviolet A. Part II. Clinical indications and results. The ocular surface, 2013. 11(2): p. 93-108. 6. Hatami-Marbini, H. and A. Rahimi, Collagen cross-linking treatment effects on corneal dynamic biomechanical properties. Experimental eye research, 2015. 135: p. 88-92. 7. JESTER, J.V., Corneal Crosslinking with Riboflavin and Ultraviolet AI Principles. 2013. 8. Lü, W.-D., et al., Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta biomaterialia, 2018. 71: p. 460-473. 9. Kim, Y.-C., J.-H. Park, and M.R. Prausnitz, Microneedles for drug and vaccine delivery. Advanced drug delivery reviews, 2012. 64(14): p. 1547-1568. 10. Demir, Y.K., Z. Akan, and O. Kerimoglu, Characterization of polymeric microneedle arrays for transdermal drug delivery. PloS one, 2013. 8(10). 11. Fukushima, K., et al., Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharmaceutical research, 2011. 28(1): p. 7-21. 12. Raphael, A.P., et al., Targeted, needle‐free vaccinations in skin using multilayered, densely‐packed dissolving microprojection arrays. Small, 2010. 6(16): p. 1785-1793. 13. Indermun, S., et al., Current advances in the fabrication of microneedles for transdermal delivery. Journal of controlled release, 2014. 185: p. 130-138. 14. Smart, W.H. and K. Subramanian, The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes technology therapeutics, 2000. 2(4): p. 549-559. 15. Martin, C., et al., Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. Journal of controlled Release, 2012. 158(1): p. 93-101. 16. Wendorf, J.R., et al., Transdermal delivery of macromolecules using solid-state biodegradable microstructures. Pharmaceutical research, 2011. 28(1): p. 22-30. 17. Park, J.-H., M.G. Allen, and M.R. Prausnitz, Polymer microneedles for controlled-release drug delivery. Pharmaceutical research, 2006. 23(5): p. 1008-1019. 18. Santos, L.F., et al., Biomaterials for drug delivery patches. European Journal of Pharmaceutical Sciences, 2018. 118: p. 49-66. 19. Sullivan, S.P., N. Murthy, and M.R. Prausnitz, Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Advanced materials, 2008. 20(5): p. 933-938. 20. Søndergaard, A.P., A. Ivarsen, and J. Hjortdal, Corneal resistance to shear force after UVA-riboflavin cross-linking. Investigative ophthalmology visual science, 2013. 54(7): p. 5059-5069. 21. Agrawal, S., et al., Sound frequency analysis and the site of snoring in natural and induced sleep. Clinical Otolaryngology Allied Sciences, 2002. 27(3): p. 162-166. 22. Sullivan, S.P., et al., Dissolving polymer microneedle patches for influenza vaccination. Nature medicine, 2010. 16(8): p. 915. 23. McCrudden, M.T., et al., Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. Journal of Controlled Release, 2014. 180: p. 71-80. 24. Park, J.-H., M.G. Allen, and M.R. Prausnitz, Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. Journal of controlled release, 2005. 104(1): p. 51-66. 25. Davis, S.P., et al., Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. Journal of biomechanics, 2004. 37(8): p. 1155-1163. 26. Stuck, B.A. and B. Hofauer, The Diagnosis and Treatment of Snoring in Adults. Deutsches Aerzteblatt International, 2019. 116(48). 27. Thakur, R.R.S., et al., Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug delivery and translational research, 2016. 6(6): p. 800-815. 28. Meek, K.M. and C. Boote, The organization of collagen in the corneal stroma. Experimental eye research, 2004. 78(3): p. 503-512. 29. Zhang, Z., et al., Effects of EDC crosslinking on the stiffness of dentin hybrid layers evaluated by nanoDMA over time. Dental Materials, 2017. 33(8): p. 904-914. 30. Chu, L.Y., S.-O. Choi, and M.R. Prausnitz, Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. Journal of pharmaceutical sciences, 2010. 99(10): p. 4228-4238. 31. Lee, I.-C., et al., Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. Journal of Materials Chemistry B, 2015. 3(2): p. 276-285. 32. Tandler, B., et al., Riboflavin and mouse hepatic cell structure and function: II. Division of mitochondria during recovery from simple deficiency. The Journal of cell biology, 1969. 41(2): p. 477-493. 33. Wollensak, G., et al., Endothelial cell damage after riboflavin–ultraviolet-A treatment in the rabbit. Journal of Cataract Refractive Surgery, 2003. 29(9): p. 1786-1790. 34. Wollensak, G., et al., Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic research, 2003. 35(6): p. 324-328. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77013 | - |
| dc.description.abstract | 打鼾是由於軟顎的塌陷導致上呼吸道阻塞,而氣流強行通過氣道所引起軟顎的震動並發出聲音就是我們常見的打鼾。本篇研究中,利用核黃素與UVA和膠原蛋白的交聯來增加組織的剛性,而用塗抹、注射和可溶性微針的方式來給予組織核黃素,並比較幾個常見的藥物傳遞方式的效果和效率。可溶性微針結合水溶性藥物是近幾年很有發展的給藥方式,並在實驗中測試其刺入組織的力和深度等特性,來評估所使用的製作微針的高分子濃度,最後選擇50% PVP來製作微針。根據我們的實驗結果,50% PVP微針包裹2% 核黃素相較於其他藥物傳遞方式有最好的效率使組織的剛性增加,而且在流變分析中,也證明經過治療的組織有較好的阻尼能力,並防止組織震動。綜上所述,本篇研究描述了特殊的可溶性微針結合水溶性藥物的方法,並證實可以穿透表皮組織,將藥物傳到較深的位置,使組織的剛性和阻尼能力增加。因此,本研究提供一個有潛力的治療方法和給藥工具來治療打鼾,並增加治療效果和病患的接受度與順應性。 | zh_TW |
| dc.description.abstract | Snoring is due to the collapse of the soft palates resulting in obstruction of the upper airway. In addition, the vibration of the soft palates caused by the air passing through the airway and making a sound are our common snoring. In this study, the crosslinking of riboflavin with UVA and collagen was used to increase the stiffness of the tissue. In this research, smearing, injection, and dissolving microneedles were used to administer riboflavin, and the effects and efficiencies of these drug delivery methods were compared. Dissolving microneedles combined with water-soluble drugs is a very developmental method of administration in recent years. In the experiments, the characteristics of the force and depth of the microneedles insertion into the tissue were tested to evaluate the polymer concentration of microneedles to used. Finally, 50% PVP was selected to fabricated microneedles. According to our results, 50% PVP microneedles contained 2% riboflavin have the best efficiency compared to other drug delivery methods to increase the stiffness of the tissue. And in the rheological analysis, it also proved that the treated tissue has better damping ability and prevents tissue vibration. In summary, this study describes a method of combining special soluble microneedles with water-soluble drugs. It was confirmed that it can penetrate the epidermal tissue and transfer the drug to a deeper position, which increases the stiffness and damping capacity of the tissue. Therefore, this study provides a potential therapeutic method and drug delivery tool to treat snoring, and increase the therapeutic effect and the acceptance and compliance of patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:21Z (GMT). No. of bitstreams: 1 U0001-2307202016483900.pdf: 3205621 bytes, checksum: 2463a559fb36fe7d46804c686ea8d1fe (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................................................................................# 致謝 i 中文摘要 ii Abstract …………………………………………………………………...……….… iii Contents .. v List of Figures………………………………………………………………………... vi Chapter 1 Introduction………………………………………………………….…. 1 1.1. Snoring……………………………………………………………………..….1 1.2. Riboflavin-UVA crosslinking………………………………………………. 2 1.3. Microneedle ………………………………………………………………… 3 1.4. Microneedle material………………………………………………….…...... 4 1.5. Rheological properties………………………………………………………. 5 Chapter 2 Materials and methods …………………………………………..…. 7 2.1 Materials…………………………………………………………………...… 7 2.2 Fabrication of dissolving MN arrays……………………………………….... 7 2.3 Preparation of drug-loaded microneedle arrays………………….…………... 8 2.4 Microneedles characterization………………………………………….…… 8 2.5 Assessment of the insertion force in soft palates……………….…………… 9 2.6 Assessment of the insertion depth in soft palates………………………….… 9 2.7 Crosslinking procedures……………………………………………….…….. 9 2.7.1 Use different drug delivery methods to give the same dose………...…. 10 2.8 Rheological characterization of porcine soft palates……………………..… 11 2.9 Human foreskin fibroblast cells (Hs68) culture…………………….……..... 11 2.10 Cell viability……………………………………………………………… 11 2.11 Statistical analysis………………………………………………………... 12 Chapter 3 Results…………………………...………………...…………………… 13 3.1 Fabrication and characterization of microneedles………………………...… 13 3.2 Insertion force and depth of microneedles……………………………..…..... 13 3.3 Riboflavin-induced crosslinking effect measurements……………..…….…. 14 3.4 Rheological properties…………………………………………..…….…...…15 3.5 Cell viability………………………………………………………………… 16 Chapter 4 Discussion…….……………….....………………………………….…… 18 Chapter 5 Conclusion……..…………………………..……………...……….…….. 24 Figures……………………………………………………………………………… 25 Reference…………………………………………………………………………… 34 | |
| dc.language.iso | en | |
| dc.subject | 打鼾 | zh_TW |
| dc.subject | 軟顎 | zh_TW |
| dc.subject | 核黃素/紫外線交聯術 | zh_TW |
| dc.subject | 微針陣列 | zh_TW |
| dc.subject | 高分子 | zh_TW |
| dc.subject | 生物機械性質 | zh_TW |
| dc.subject | biomechanical strength | en |
| dc.subject | Snoring | en |
| dc.subject | Riboflavin/UVA crosslinking | en |
| dc.subject | Microneedles | en |
| dc.subject | Oral drug delivery | en |
| dc.subject | Soft palates | en |
| dc.subject | Polymer | en |
| dc.title | 以核黃素交聯膠原蛋白增強軟顎組織的機械性質 | zh_TW |
| dc.title | Riboflavin-induced Collagen Crosslinking to Enhance the Mechanical Properties of Soft Palates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃琮瑋(Tsung-Wei Huang),林宏殷(Hung-Yin Lin),李枚樺(Mei-Hwa Lee) | |
| dc.subject.keyword | 打鼾,核黃素/紫外線交聯術,微針陣列,軟顎,高分子,生物機械性質, | zh_TW |
| dc.subject.keyword | Snoring,Riboflavin/UVA crosslinking,Microneedles,Oral drug delivery,Soft palates,Polymer,biomechanical strength, | en |
| dc.relation.page | 36 | |
| dc.identifier.doi | 10.6342/NTU202001793 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2307202016483900.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
