Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77012
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠(Yen-Hui Chen)
dc.contributor.authorSheng-Hsuan Kuen
dc.contributor.author顧聲瑄zh_TW
dc.date.accessioned2021-07-10T21:43:19Z-
dc.date.available2021-07-10T21:43:19Z-
dc.date.copyright2020-09-04
dc.date.issued2020
dc.date.submitted2020-07-24
dc.identifier.citationPark, S.B., et al., Overview and critical revision of clinical assessment tools in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst, 2019. 24 Suppl 2: p. S13-S25.
Zajączkowska, R., et al., Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. International Journal of Molecular Sciences, 2019. 20(6): p.1451
Cioroiu, C. and L.H. Weimer, Update on Chemotherapy-Induced Peripheral Neuropathy. Curr Neurol Neurosci Rep, 2017. 17(6): p. 47.
Hu, L.Y., et al., Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol, 2019. 17(2): p. 184-196.
Seretny, M., et al., Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain, 2014. 155(12): p. 2461-70.
Starobova, H. and I. Vetter, Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci, 2017. 10: p. 174.
Banach, M., J.K. Juranek, and A.L. Zygulska, Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav, 2017. 7(1): p. e00558.
Gebremedhn, E.G., P.J. Shortland, and D.A. Mahns, The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer, 2018. 18(1): p. 410.
Cavaletti, G. and P. Marmiroli, Pharmacotherapy options for managing chemotherapy-induced peripheral neurotoxicity. Expert Opinion on Pharmacotherapy, 2017. 19(2): p. 113-121.
Lee, S.A., et al., The role of high mobility group box 1 in innate immunity. Yonsei Med J, 2014. 55(5): p. 1165-76.
Li J, K.R., Tabibzadeh S, Yang R, Ochani M, Qiang X, et al., Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Molecular Medicine, 2003. 9(1-2): p. 37–45.
Belgrano, F.S., et al., Role of the acidic tail of high mobility group protein B1 (HMGB1) in protein stability and DNA bending. PLoS One, 2013. 8(11): p. e79572.
Andersson, U. and K.J. Tracey, HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol, 2011. 29: p. 139-62.
Tang, D., et al., Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol, 2007. 81(3): p. 741-7.
Bell, C.W., et al., The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol, 2006. 291(6): p. C1318-25.
Tiziana Bonaldi, F.T., Paola Scaffidi, Denise Ferrera, Annalisa Porto, Angela Bachi, Anna Rubartelli, Alessandra Agresti, Marco E. Bianchi, Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal, 2003. 22(20).
Osamu Hori, J.B., Timothy Slattery, Rong Cao, Jinghua Zhang, Jing Xian Chen, Mariko Nagashima, Erik R. Lundh, Sharmila Vijay, Di Nitecki, John Morser, David Stern and Ann Marie Schmidt, The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. The Journal of Biological Chemistry, 1995. 270: p. 25752–25761.
Henri J. Huttunen, C.F.a.H.R., Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. The Journal of Biological Chemistry, 1999. 274(28): p. 19919–19924.
Youn, J.H., et al., High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol, 2008. 180(7): p. 5067-74.
Latz, E., et al., TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol, 2004. 5(2): p. 190-8.
Teicher, B.A. and S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res, 2010. 16(11): p. 2927-31.
Dave, S.H., et al., Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol, 2009. 86(3): p. 633-43.
Mollica, L., et al., Glycyrrhizin Binds to High-Mobility Group Box 1 Protein and Inhibits Its Cytokine Activities. Chemistry Biology, 2007. 14(4): p. 431-441.
Choi, H.W., et al., Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol Med, 2015. 21: p. 526-35.
Musumeci, D., G.N. Roviello, and D. Montesarchio, An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther, 2014. 141(3): p. 347-57.
Kuroiwa, Y., et al., Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One, 2013. 8(5): p. e63073.
Aggarwal, B.B. and B. Sung, Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci, 2009. 30(2): p. 85-94.
Kim, D.C., W. Lee, and J.S. Bae, Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res, 2011. 60(12): p. 1161-8.
Zhu, X., et al., Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014. 9(3): p. e91303.
Zheng, S., et al., 2-O, 3-O Desulfated Heparin Blocks High Mobility Group Box 1 Release by Inhibition of p300 Acetyltransferase Activity. Am J Respir Cell Mol Biol, 2017. 56(1): p. 90-98.
Yalcin, I., F. Barthas, and M. Barrot, Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci Biobehav Rev, 2014. 47: p. 154-64.
Wan, W., et al., The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J Immunol Res, 2016. 2016: p. 6430423.
Kiguchi, N., Y. Kobayashi, and S. Kishioka, Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol, 2012. 12(1): p. 55-61.
Kwiatkowski, K. and J. Mika, The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep, 2018. 70(4): p. 821-830.
Lees, J.G., et al., Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer, 2017. 73: p. 22-29.
Mohammadi, A., et al., Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem, 2019. 66: p. 1-16.
Sekiguchi, F., et al., Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology, 2018. 141: p. 201-213.
Nishida, T., et al., Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology, 2016. 365: p. 48-58.
Hewlings, S.J. and D.S. Kalman, Curcumin: A Review of Its' Effects on Human Health. Foods, 2017. 6(10).
Venereau, E., et al., HMGB1 as biomarker and drug target. Pharmacol Res, 2016. 111: p. 534-544.
Agalave, N.M., et al., Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 2014. 155(9): p. 1802-13.
Sun, X., et al., Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-kB pathway. Exp Cell Res, 2018. 369(1): p. 112-119.
Oyama, Y., et al., High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab Invest, 2010. 90(6): p. 853-66.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77012-
dc.description.abstract研究背景
化學治療所引起的副作用,諸如化學治療引起的周邊神經病變 (chemotherapy-induced peripheral neuropathy, CIPN) 為癌症治療常見的不良反應。目前已有許多文獻探討CIPN的成因,破壞神經系統結構並引起CIPN的致病機理是多因素的,包括與免疫過程和神經發炎有關。在大部分細胞中,高遷移率族蛋白1(high mobility group box 1 protein, HMGB1)存在於細胞核中並參與許多細胞核內反應。HMGB1可經由主動或被動釋放至細胞外,可作為損傷相關分子模式(damage associated molecular patterns, DAMPs),針對危險訊息警告周邊細胞與免疫系統引發發炎反應,於CIPN中可能扮演重要的角色。
研究目的
本論文欲探討巨噬細胞內HMGB1是否經由乙醯化修飾後主動釋放?是否參與CIPN?HATs抑制劑是否可影響HMGB1釋放?另外,巨噬細胞與神經細胞在交互影響下,探討其中可能影響神經發炎的因子。
研究方法
在鉑類製劑中oxaliplatin的CIPN發生率高達90%,因此本研究以oxaliplatin作為引發神經痛反應之藥物。利用西方墨點法偵測HMGB1、MCP-1蛋白質表現量,並利用傷口癒合實驗測試巨噬細胞RAW264.7遷移能力。
研究結果
結果顯示加入15 μM的oxaliplatin培養24小時會使巨噬細胞RAW264.7與BV-2的釋放HMGB1蛋白質表現量增加2.7與3.9倍 (p=0.039;p=0.01),達顯著差異。在巨噬細胞RAW264.7中,預先加入HMGB1抑制劑甘草素(glycyrrhizin) 500 μM培養24小時,再更換成15 μM的oxaliplatin培養24小時,發現隨甘草素濃度上升至500 μM可以顯著降低HMGB1蛋白質的釋放至0.3倍 (p<0.001)。另外,加入15 μM的oxaliplatin於RAW264.7細胞培養12或24小時後釋放的HMGB1蛋白質中乙醯化增加14.7及16.1倍 (p<0.001;p<0.001),大幅顯著上升,使HMGB1蛋白可經由巨噬細胞主動釋放至細胞外。預先加入HATs抑制劑薑黃素(curcumin) 50 μM培養24小時再更換成15 μM的oxaliplatin培養24小時,發現薑黃素濃度增加至50 μM可以降低40% HMGB1蛋白質釋放(p<0.001),且釋放的乙醯化蛋白質量明顯降低至0.5倍 (p<0.001)。接著再探討免疫細胞所釋放的HMGB1如何影響神經細胞。研究發現加入oxaliplatin的神經細胞N2a會釋出單核細胞趨化蛋白-1(monocyte chemoattractant protein-1;MCP-1)。將此神經細胞N2a的上清液加入巨噬細胞RAW264.7培養,會使RAW264.7細胞遷移能力顯著上升,暗示可能藉由MCP-1之分泌而使得免疫細胞聚集至神經細胞周遭釋放HMGB1,導致神經發炎反應的產生。而這經由MCP-1影響HMGB1釋放增加的現象,加入50 μM 的curcumin可逆轉HMGB1過度釋放,使HMGB1表現量降低70% (p<0.001)。
結論
本研究證明於給予適當濃度之oxaliplatin會促使巨噬細胞主動釋放乙醯化HMGB1,這項機轉可能使得神經產生發炎反應。薑黃素在本研究亦發現可隨濃度上升,抑制HMGB1乙醯化能力越強,使得釋放至細胞外HMGB1表現量大幅下降。經由本研究結果,未來能以此機制為基礎找出可以用作預防或治療CIPN的標靶藥物。
zh_TW
dc.description.abstractBackground
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating adverse effect. However, the molecular mechanisms underlying CIPN are still unclear. Accumulating evidence supports that neuropathic pain is associated with neuroinflammation. High mobility group Box 1 protein (HMGB1) is a nuclear protein that acts as a DNA chaperone and participates in a number of activities in the nucleus. HMGB1 can exit the cell through two different pathways: passive or active release. HMGB1 can also translocate to the extracellular medium, where it acts as a damage associated molecular pattern (DAMP) molecule that alerts nearby cells and the immune system to immediate danger, triggering inflammation. Several lines of evidence suggest that HMGB1 may play pronociceptive role in CIPN.
Objective
We investigated the effect of oxaliplatin on the active release pathway of immune cells which participate in CIPN through acetylated HMGB1, and the influence of HATs inhibitors.
Methods
The incidence rate of CIPN by oxaliplatin is up to 90%, much higher than by other chemotherapeutic agents. Oxaliplatin was introduced to study the CIPN on immune cell and nerve cell interactions. Protein levels of HMGB1 and MCP-1 were detected using Western blot, and the migration ability of macrophage RAW264.7 was detected by the wound healing assay.
Results
The extracellular release of HMGB1 protein increased by 2.7 and 3.8 folds, respectively, when macrophage RAW264.7 cells and glial BV-2 cells were administrated with 15 μM oxaliplatin for 24 hours. When RAW264.7 cells were pretreated with 500 μM glycyrrhizin, known as a HMGB1 inhibitor, for 24h, the oxaliplatin-induced extracellular HMGB1 protein was significantly reduced to 0.3 fold. The extracellular release of HMGB1 protein was also inhibited by 50 μM curcumin, an HAT inhibitor, in RAW264.7 cells. Acetylation of HMGB1 protein was significantly detected in extracellular medium of RAW264.7 cells (p<0.001). Accordingly, the acetylated HMGB1 protein was reduced by 50 μM curcumin in RAW264.7 cells. On the other hand, it is interesting to know the way how the macrophage RAW264.7 cells approach nerve cells for further action on the neuron through HMGB1. Co-culture of macrophage RAW264.7 cells and nerve N2a cells resulted in production of profound amount of extracellular HMGB1 and monocyte chemoattractant protein-1 (MCP-1), compared to the uni-cell cultures. The MCP-1 protein was detected from oxaliplatin-treated N2a cell culture medium. The wound healing assay showed the MCP-1-containing supernatant of oxaliplatin-treated N2a cell culture facilitated migration of macrophages RAW264.7. It implies that the secreted MCP-1 may serve as a chemoattractant for macrophages aggregating toward the nerve cells and triggering HMGB1 release from macrophage, which evokes ultimate neuroinflammation.
Conclusion
Given clinically therapuetical concentration of oxaliplatin to macrophage enables actively extracellular release of acetylated HMGB1 which may be involved in neuroinflammation. Curcumin inhibits HMGB1 acetylation and reduces the amount of extracellular HMGB1 so as to become a reversal of CIPN.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:43:19Z (GMT). No. of bitstreams: 1
U0001-2307202017500400.pdf: 2646689 bytes, checksum: 02ddccea262c7e8d420fd599bcb59a82 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
英文名詞與縮寫對照表 IX
第一章 緒論 1
1-1、 化學治療引起的周邊神經病變 1
1-1-1、 CIPN的臨床特徵及作用機轉 1
1-1-2、 引起CIPN之藥物 2
1-2、 高遷移率族蛋白1 (High mobility group box 1, HMGB1) 3
1-2-1、 HMGB1的結構 3
1-2-2、 HMGB1的功能 3
1-2-3、 HMGB1的釋放機轉 4
1-2-4、 HMGB1的受體 4
1-2-5、 影響HMGB1釋放之小分子化合物 5
1-3、 周邊神經痛與HMGB1之關聯性 6
1-4、 周邊神經痛與趨化因子(chemokine)之關聯性 7
1-5、 假說與研究目的 8
第二章 材料與研究方法 9
2-1、 實驗儀器 9
2-2、 實驗材料 10
2-2-1、 細胞 10
2-2-2、 實驗藥品與試劑 10
2-3、 實驗方法 11
2-3-1、 培養液與緩衝液之配置 11
2-3-2、 細胞株培養 12
2-3-3、 細胞存活率分析 (MTT assay) 12
2-3-4、 西方墨點法 (Western blot) 12
2-3-5、 傷口癒合試驗(Wound Healing Assay) 14
2-3-6、 統計檢定 15
第三章 實驗結果 16
3-1、 Oxaliplatin對於巨噬細胞存活之影響 16
3-2、 Oxaliplatin可使巨噬細胞HMGB1蛋白質主動釋放量增加 16
3-3、 Oxaliplatin使巨噬細胞HMGB1蛋白質隨時間增長釋放量增加 16
3-4、 Glycyrrhizin使巨噬細胞HMGB1蛋白質釋放量減少 17
3-5、 Curcumin使巨噬細胞HMGB1蛋白質釋放量減少 17
3-6、 Oxaliplatin使巨噬細胞HMGB1蛋白質隨時間增長乙醯化修飾的程度增加 17
3-7、 Curcumin使巨噬細胞HMGB1乙醯化蛋白質釋放量減少 18
3-8、 共同培養巨噬細胞與神經細胞下HMGB1蛋白質的變化 18
3-9、 共同培養巨噬細胞與神經細胞下MCP-1蛋白質的變化 19
3-10、 Oxaliplatin可使神經細胞MCP-1蛋白質釋放量增加 20
3-11、 Oxaliplatin對於巨噬細胞RAW264.7細胞遷移影響 20
第四章 討論 43
4-1、 在適當的oxaliplatin臨床治療濃度之下,促使巨噬細胞釋放HMGB1可能為CIPN原因之一 43
4-2、 Curcumin對於巨噬細胞內HMGB1濃度影響不大,但能有效降低細胞外HMGB1表現量以及乙醯化HMGB1表現量 43
4-3、 目前已知HMGB1抑制劑皆與抗發炎作用有關,顯示減少HMGB1之濃度可能為減少發炎反應原因之一 45
4-4、 當巨噬細胞與神經細胞共同培養時,在添加oxaliplatin下釋放出HMGB1之濃度大幅上升 46
4-5、 當巨噬細胞與神經細胞共同培養時,無添加oxaliplatin下釋放出大量HMGB1可能與趨化因子作用有關 46
第五章 結論與未來展望 48
參考文獻 50
dc.language.isozh-TW
dc.subject化學治療引起的周邊神經病變zh_TW
dc.subject高遷移率族蛋白1zh_TW
dc.subject乙醯化修飾zh_TW
dc.subject單核細胞趨化蛋白zh_TW
dc.subject薑黃素zh_TW
dc.subjecthigh mobility group box 1 proteinen
dc.subjectcurcuminen
dc.subjectchemotherapy-induced peripheral neuropathyen
dc.subjectacetylationen
dc.subjectmonocyte chemoattractant protein-1en
dc.titleHMGB1參與Oxaliplatin誘發周邊神經病變之研究zh_TW
dc.titleInvolvement of HMGB1 in the Development of Oxaliplatin-induced Peripheral Neuropathyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿(Lih-Ching Hsu),孔繁璐(Fan-Lu Kung),林琬琬(Wan-Wan Lin)
dc.subject.keyword化學治療引起的周邊神經病變,高遷移率族蛋白1,乙醯化修飾,單核細胞趨化蛋白,薑黃素,zh_TW
dc.subject.keywordacetylation,chemotherapy-induced peripheral neuropathy,curcumin,high mobility group box 1 protein,monocyte chemoattractant protein-1,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202001798
dc.rights.note未授權
dc.date.accepted2020-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-2307202017500400.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved