請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑媛(Sui-Yuan Chang) | |
| dc.contributor.author | Yu-Hao Pang | en |
| dc.contributor.author | 龐宇浩 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:17Z | - |
| dc.date.available | 2021-07-10T21:43:17Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-24 | |
| dc.identifier.citation | 1.Chen, Z.W., et al., Surging HIV-1 CRF07_BC epidemic among recently infected men who have sex with men in Fujian, China. J Med Virol, 2018. 90(7): p. 1210-1221. 2.Curran, J.W., et al., Acquired immunodeficiency syndrome (AIDS) associated with transfusions. N Engl J Med, 1984. 310(2): p. 69-75. 3.Lin, H.H., et al., An epidemic of HIV type I CRF07_BC infection among injection drug users in Taiwan. J Acquir Immune Defic Syndr, 2006. 42(2): p. 248-55. 4.Potty, R.S., et al., Incidence, prevalence and associated factors of mother-to-child transmission of HIV, among children exposed to maternal HIV, in Belgaum district, Karnataka, India. BMC Public Health, 2019. 19(1): p. 386. 5.Vidya Vijayan, K.K., et al., Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol, 2017. 8: p. 580. 6.Koppensteiner, H., R. Brack-Werner, and M. Schindler, Macrophages and their relevance in Human Immunodeficiency Virus Type I infection. Retrovirology, 2012. 9(1): p. 82. 7.Manches, O., D. Frleta, and N. Bhardwaj, Dendritic cells in progression and pathology of HIV infection. Trends Immunol, 2014. 35(3): p. 114-22. 8.Gurunathan, S., et al., Use of predictive markers of HIV disease progression in vaccine trials. Vaccine, 2009. 27(14): p. 1997-2015. 9.Little, S.J., et al., Viral dynamics of acute HIV-1 infection. J Exp Med, 1999. 190(6): p. 841-50. 10.Reeves, D.B., et al., A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun, 2018. 9(1): p. 4811. 11.Komitova, R., K. Chudomirova, and T. Abadjieva, Pulmonary Kaposi's Sarcoma - Initial Presentation of HIV Infection. Folia Med (Plovdiv), 2019. 61(4): p. 643-649. 12.Arefaine, Z.G., et al., Incidence and predictors of HIV related opportunistic infections after initiation of highly active antiretroviral therapy at Ayder Referral Hospital, Mekelle, Ethiopia: A retrospective single centered cohort study. PLoS One, 2020. 15(4): p. e0229757. 13.Keele, B.F., et al., Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science, 2006. 313(5786): p. 523-6. 14.Bbosa, N., P. Kaleebu, and D. Ssemwanga, HIV subtype diversity worldwide. Curr Opin HIV AIDS, 2019. 14(3): p. 153-160. 15.(WHO), W.H.O. People living with HIV by WHO region, 2018. Available from: https://www.who.int/gho/hiv/epidemic_status/cases_all/en/. 16.衛生福利部疾病管制署. 本國籍感染人類免疫缺乏病毒者依存活情形統計表. Available from: https://www.cdc.gov.tw/File/Get/sWU9SQHOg6jUIreBuIhmvg. 17.Weiss, R.A., The discovery of endogenous retroviruses. Retrovirology, 2006. 3(1): p. 67. 18.Blumenthal, R., S. Durell, and M. Viard, HIV entry and envelope glycoprotein-mediated fusion. J Biol Chem, 2012. 287(49): p. 40841-9. 19.Sundquist, W.I. and H.G. Krausslich, HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med, 2012. 2(7): p. a006924. 20.Li, G. and E. De Clercq, HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev, 2016. 80(3): p. 679-731. 21.Xiao, X., et al., Interactions of CCR5 and CXCR4 with CD4 and gp120 in human blood monocyte-derived dendritic cells. Exp Mol Pathol, 2000. 68(3): p. 133-8. 22.Tekeste, S.S., et al., Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol, 2015. 89(23): p. 12058-69. 23.Sarafianos, S.G., et al., Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol, 2009. 385(3): p. 693-713. 24.Delelis, O., et al., Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology, 2008. 5: p. 114. 25.Rice, A.P., The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Curr Pharm Des, 2017. 23(28): p. 4098-4102. 26.Blissenbach, M., et al., Nuclear RNA export and packaging functions of HIV-1 Rev revisited. J Virol, 2010. 84(13): p. 6598-604. 27.Rai, M.A., S. Pannek, and C.J. Fichtenbaum, Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert Opin Emerg Drugs, 2018. 23(2): p. 149-157. 28.Usach, I., V. Melis, and J.E. Peris, Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc, 2013. 16: p. 1-14. 29.Choi, E., et al., Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci OA, 2018. 4(9): p. Fso338. 30.Soldi, G.F.R., et al., Major drug resistance mutations to HIV-1 protease inhibitors (PI) among patients exposed to PI class failing antiretroviral therapy in Sao Paulo State, Brazil. PLoS One, 2019. 14(10): p. e0223210. 31.Phanuphak, N. and R.M. Gulick, HIV treatment and prevention 2019: current standards of care. Curr Opin HIV AIDS, 2020. 15(1): p. 4-12. 32.Luo, X.L., et al., Incidence and types of HIV-1 drug resistance mutation among patients failing first-line antiretroviral therapy. J Pharmacol Sci, 2019. 139(4): p. 275-279. 33.Xiao, T., et al., HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nature Chemical Biology, 2020. 16(5): p. 529-537. 34.Timilsina, U., et al., Identification of potent maturation inhibitors against HIV-1 clade C. Scientific Reports, 2016. 6(1): p. 27403. 35.Schommers, P., et al., Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell, 2020. 180(3): p. 471-489.e22. 36.Bell, N.M. and A.M. Lever, HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol, 2013. 21(3): p. 136-44. 37.Ghanam, R.H., et al., Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Front Microbiol, 2012. 3: p. 55. 38.Ono, A., et al., Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A, 2004. 101(41): p. 14889-94. 39.Chukkapalli, V. and A. Ono, Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol, 2011. 410(4): p. 512-24. 40.Worthylake, D.K., et al., Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 1): p. 85-92. 41.Pornillos, O., B.K. Ganser-Pornillos, and M. Yeager, Atomic-level modelling of the HIV capsid. Nature, 2011. 469(7330): p. 424-7. 42.von Schwedler, U.K., et al., Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol, 2003. 77(9): p. 5439-50. 43.Heath, M.J., et al., Differing roles of the N- and C-terminal zinc fingers in human immunodeficiency virus nucleocapsid protein-enhanced nucleic acid annealing. J Biol Chem, 2003. 278(33): p. 30755-63. 44.Rein, A., RNA Packaging in HIV. Trends Microbiol, 2019. 27(8): p. 715-723. 45.Muriaux, D. and J.L. Darlix, Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol, 2010. 7(6): p. 744-53. 46.Lu, K., X. Heng, and M.F. Summers, Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol, 2011. 410(4): p. 609-33. 47.Sette, P., V. Dussupt, and F. Bouamr, Identification of the HIV-1 NC binding interface in Alix Bro1 reveals a role for RNA. J Virol, 2012. 86(21): p. 11608-15. 48.Katzmann, D.J., et al., Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol, 2003. 162(3): p. 413-23. 49.Kostelansky, M.S., et al., Structural and functional organization of the ESCRT-I trafficking complex. Cell, 2006. 125(1): p. 113-26. 50.Im, Y.J., et al., Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev Cell, 2009. 17(2): p. 234-43. 51.Christ, L., et al., Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci, 2017. 42(1): p. 42-56. 52.Prescher, J., et al., Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog, 2015. 11(2): p. e1004677. 53.Pornillos, O., et al., Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol, 2002. 9(11): p. 812-7. 54.Freed, E.O., HIV-1 assembly, release and maturation. Nat Rev Microbiol, 2015. 13(8): p. 484-96. 55.Zhai, Q., et al., Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat Struct Mol Biol, 2008. 15(1): p. 43-9. 56.Fujii, K., et al., Functional role of Alix in HIV-1 replication. Virology, 2009. 391(2): p. 284-92. 57.Kondo, E. and H.G. Gottlinger, A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol, 1996. 70(1): p. 159-64. 58.Zhu, H., H. Jian, and L.J. Zhao, Identification of the 15FRFG domain in HIV-1 Gag p6 essential for Vpr packaging into the virion. Retrovirology, 2004. 1: p. 26. 59.Salgado, G.F., et al., Structural studies of HIV-1 Gag p6ct and its interaction with Vpr determined by solution nuclear magnetic resonance. Biochemistry, 2009. 48(11): p. 2355-67. 60.Garrus, J.E., et al., Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell, 2001. 107(1): p. 55-65. 61.Marlowe, N., et al., Analysis of insertions and deletions in the gag p6 region of diverse HIV type 1 strains. AIDS Res Hum Retroviruses, 2004. 20(10): p. 1119-25. 62.Peters, S., et al., Resistance to nucleoside analog reverse transcriptase inhibitors mediated by human immunodeficiency virus type 1 p6 protein. J Virol, 2001. 75(20): p. 9644-53. 63.van Domselaar, R., et al., HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness. J Virol, 2019. 93(9). 64.Belew, A.T. and J.D. Dinman, Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle, 2015. 14(2): p. 172-8. 65.Wang, X., et al., Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting. Cell, 2019. 176(3): p. 625-635.e14. 66.Yu, F.H., et al., Gag-Pol Transframe Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation. PLoS One, 2015. 10(6): p. e0127974. 67.Ludwig, C., A. Leiherer, and R. Wagner, Importance of protease cleavage sites within and flanking human immunodeficiency virus type 1 transframe protein p6* for spatiotemporal regulation of protease activation. J Virol, 2008. 82(9): p. 4573-84. 68.Wu, Y., et al., HIV-1 CRF07_BC with a Seven Amino Acid Deletion in the gag p6 Region Dominates in HIV-1-Infected Men Who Have Sex with Men in China. AIDS Res Hum Retroviruses, 2017. 33(9): p. 977-983. 69.Neogi, U., et al., Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients. Aids, 2014. 28(15): p. 2319-22. 70.Tamiya, S., et al., Amino acid insertions near Gag cleavage sites restore the otherwise compromised replication of human immunodeficiency virus type 1 variants resistant to protease inhibitors. J Virol, 2004. 78(21): p. 12030-40. 71.Bally, F., et al., Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses, 2000. 16(13): p. 1209-13. 72.Watanabe, S.M., et al., The HIV-1 late domain-2 S40A polymorphism in antiretroviral (or ART)-exposed individuals influences protease inhibitor susceptibility. Retrovirology, 2016. 13(1): p. 64. 73.Tseng, A., J. Seet, and E.J. Phillips, The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br J Clin Pharmacol, 2015. 79(2): p. 182-94. 74.AIDSinfo. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. 2020; Available from: https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/0. 75.Ajasin, D.O., et al., CCL2 mobilizes ALIX to facilitate Gag-p6 mediated HIV-1 virion release. Elife, 2019. 8. 76.Jiang, Y.L., et al., Construction and characterization of HIV type 1 CRF07_BC infectious molecular clone from men who have sex with men. J Virol Methods, 2016. 229: p. 70-7. 77.Bleiber, G., et al., The central region of human immunodeficiency virus type 1 p6 protein (Gag residues S14-I31) is dispensable for the virus in vitro. J Gen Virol, 2004. 85(Pt 4): p. 921-927. 78.Lin, P.H., et al., Slow immunological progression in HIV-1 CRF07_BC-infected injecting drug users. Emerg Microbes Infect, 2013. 2(12): p. e83. 79.Guenzel, C.A., C. Hérate, and S. Benichou, HIV-1 Vpr-a still 'enigmatic multitasker'. Front Microbiol, 2014. 5: p. 127. 80.Andersen, J.L., E. Le Rouzic, and V. Planelles, HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol, 2008. 85(1): p. 2-10. 81.Mansky, L.M., et al., The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol, 2000. 74(15): p. 7039-47. 82.Popov, S., et al., Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem, 1998. 273(21): p. 13347-52. 83.Chaturbhuj, D., A. Patil, and R. Gangakhedkar, PYRE insertion within HIV-1 subtype C p6-Gag functions as an ALIX-dependent late domain. Sci Rep, 2018. 8(1): p. 8917. 84.Rao, V.R., et al., HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci, 2008. 28(40): p. 10010-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77011 | - |
| dc.description.abstract | 第一型人類免疫缺乏病毒(human immunodeficiency virus type 1,HIV-1)的Gag結構蛋白質與病毒顆粒的組裝與釋出有關。Gag是含有多種蛋白質的聚蛋白質,其組成之一的p6Gag蛋白質具有PTAP和LYPxnL兩個late domain,可分別與細胞內的Tsg101或ALIX結合,進一步召集內吞體分選轉運複合體,以協助組裝好的病毒顆粒進行出芽。此外,p6Gag蛋白質亦可於病毒組裝時將Vpr蛋白質帶入病毒顆粒內,以利後續的感染。然而,分析不同臨床病毒株的p6Gag蛋白質序列可在不同位點觀察到胺基酸的刪除,而這些胺基酸刪除便可能使病毒具有不同的表現型。因此,本研究旨在分析臨床HIV-1 p6Gag蛋白質最常見之胺基酸刪除形式,並探討該胺基酸刪除是否會改變病毒的生長能力、蛋白質功能,以及病毒對藥物的感受性。 首先分析自臨床取得的1954條HIV-1序列,發現p6Gag蛋白質最常見之胺基酸刪除形式為31ID32 刪除(158/1954,8%),並且具 31ID32 刪除之HIV-1變異株帶有11EPTAPP16插入之比例(41/129,32%)較野生株(140/1269,11%)高。接著以演化樹進行分析,顯示這些HIV-1變異株非來自群體感染。隨後測試 HIV-1野生株與變異株的生長曲線,發現變異株的生長能力較野生株低,並進一步透過西方墨點法發現變異株的Gag結構蛋白質切割效率、病毒釋出效率以及蛋白質酶的表現雖與野生株沒有差異,但包裹進變異株病毒顆粒內的 Vpr蛋白質卻較野生株少。以電腦模擬出的蛋白質結構也證實31ID32刪除可能會改變p6Gag蛋白質其中一個Vpr蛋白質結合位的構形。進一步分析病人接受治療後六個月內的血漿病毒量,發現變異株的下降幅度較野生株大,且導致藥物治療失敗的抗藥性突變模式也與野生株不同。最後,測試不同抗病毒藥物對 HIV-1野生株與變異株的EC50,發現變異株對嵌入酶抑制劑有較佳的感受性。 | zh_TW |
| dc.description.abstract | The Gag structural protein of human immunodeficiency virus type 1 (HIV-1) is involved in the assembly and release of virus particles. Gag is a polyprotein composed of different components. One of its components, p6Gag protein, has two late domains, PTAP and LYPxnL. These domains can interact with Tsg101 or ALIX, and recruit the endosomal-sorting complex required for transport (ESCRT) to assist virus budding. p6Gag protein can also bring viral protein R (Vpr) into virus particles during virus assembly to facilitate infection. However, a variety of amino acid deletions in p6Gag protein are observed in different clinical HIV-1 isolates, and the influence of these deletions in virus phenotype remains unclear. Therefore, the purpose of this study is to examine the most common amino acid deletion pattern in clinical HIV-1 p6Gag protein, and to analyze whether this amino acid deletion influences the viral replication capacity, the function of p6Gag protein, as well as the drug susceptibility of HIV-1. First, the p6Gag protein sequences obtained from the clinical HIV-1 isolates were analyzed, and it was found that the most common amino acid deletion pattern of p6Gag protein was 31ID32 deletion. Besides, the HIV-1 variants with 31ID32 deletion (Del) had a higher proportion of carrying 11EPTAPP16 insertion than the wild type. Next, the phylogenetic analysis showed that the Del variants did not form a cluster, implicated they are not from a transmission origin. Then, the growth kinetics of the Del variant was tested, and it was found that the Del variant had lower replication capacity than the wild type. Furthermore, the western blot was used to analyze the p6Gag protein function. The results showed that there was no difference between the HIV-1 wild type and the Del variant on Gag processing efficiency, virus releasing efficiency and protease expression. Nevertheless, the amount of Vpr protein in virus particles of the Del variant was less than the wild type. In addition, the protein structures predicted by the software also suggested that the 31ID32 deletion could potentially alter the conformation of one of the Vpr protein binding sites in the p6Gag protein. Finally, clinical analysis showed that the plasma viral load of the Del variant had a larger decline than the wild type after patients received the treatments for six months. The half maximal effective concentration (EC50) of different antiretroviral drugs also revealed that the Del variant was more susceptible to the integrase inhibitors compared to the wild type. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:17Z (GMT). No. of bitstreams: 1 U0001-2307202021165500.pdf: 4982703 bytes, checksum: 45f82e8950dd5e851ae8a84b4c2c4cd0 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 IX 表目錄 X 附錄 XI 第一章 前言 1 1.1 第一型人類免疫缺乏病毒(HIV-1)與後天免疫缺乏症候群(AIDS) 1 1.1.1 病毒傳播途徑與疾病進程 1 1.1.2 流行病學 2 1.1.3 病毒構造與基因組成 2 1.1.4 病毒生命週期簡介 3 1.1.5 臨床治療 4 1.2 HIV-1病毒之組裝(Assembly)與出芽(Budding) 4 1.2.1 病毒組裝(Assembly)與Gag前驅蛋白質(Pr55Gag) 4 1.2.2 病毒出芽(Budding)與內吞體分選轉運複合體(ESCRT) 6 1.3 HIV-1 p6Gag 蛋白質 7 1.3.1 p6Gag 蛋白質之結構與功能 7 1.3.2 p6Gag 蛋白質之基因多樣性 8 1.3.3 計畫性核糖體框架轉移(-1PRF)與 p6*蛋白質 8 1.4 研究動機 9 第二章 實驗材料與方法 11 2.1 實驗材料 11 2.1.1 細胞 11 2.1.2 商業試劑套組 11 2.1.3 抗體 12 2.2 實驗方法 13 2.2.1 統計方法與分析軟體 13 2.2.2 定點突變(Site-directed mutagenesis) 13 2.2.3 轉型作用(Transformation) 13 2.2.4 小量細菌質體萃取(Mini plasmid extraction) 14 2.2.5 限制酶切割(Restriction enzyme digestion) 14 2.2.6 結晶紫洋菜膠電泳(Crystal violet gel electrophoresis) 15 2.2.7 洋菜膠萃取DNA片段(DNA gel purification) 15 2.2.8 T4 DNA連接酶反應(T4 DNA ligase ligation) 16 2.2.9 大量細菌質體萃取(Maxi plasmid extraction) 16 2.2.10 293T 細胞株培養 17 2.2.11 轉染作用(Transfection) 18 2.2.13 分離周邊血液單核細胞(PBMC isolation) 19 2.2.14 周邊血液單核細胞感染(PBMC infection) 20 2.2.15 病毒RNA萃取(Viral RNA extraction) 20 2.2.16 單步驟即時定量反轉錄聚合酶連鎖反應(One-step real-time RT-PCR) 21 2.2.17 RNA反轉錄反應(Reverse transcription) 21 2.2.19 蔗糖梯度超高速離心(Sucrose gradient ultracentrifugation) 22 2.2.20 蛋白質定量(Protein quantification) 23 2.2.21 西方墨點法(Western blot) 23 第三章 實驗結果 25 3.1 臨床檢體之p6Gag蛋白質序列分析 25 3.1.1 分析樣本來源之臨床資料 25 3.1.2 p6Gag蛋白質之胺基酸刪除分析 25 3.1.3 演化樹分析 26 3.2 p6Gag蛋白質帶有31ID32刪除之HXB2 質體建構 27 3.3 測試 Del變異株之生長能力 28 3.4 分析Del變異株之Gag結構蛋白質切割效率與病毒釋出效率 28 3.5 探討Del變異株之挾帶Vpr蛋白質之能力 29 3.5.1 定量病毒顆粒所含之Vpr蛋白質 29 3.5.2 p6Gag蛋白質之結構預測 30 3.6 測試Del變異株之蛋白質酶表現 30 3.7 分析Del變異株對抗病毒藥物的感受性 31 3.7.1 病人接受治療後的血漿病毒量變化 31 3.7.2 治療失敗病人之抗藥性突變模式 32 3.7.3抗病毒藥物對Del變異株之半最大效應濃度 32 第四章 實驗討論 34 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | Vpr蛋白質 | zh_TW |
| dc.subject | p6Gag蛋白質 | zh_TW |
| dc.subject | 胺基酸刪除 | zh_TW |
| dc.subject | Vpr protein | en |
| dc.subject | p6Gag protein | en |
| dc.subject | amino acid deletion | en |
| dc.title | 第一型人類免疫缺乏病毒具 p6Gag 蛋白質 31ID32 刪除變異株之研究 | zh_TW |
| dc.title | Study of HIV-1 Variant with p6Gag 31ID32 Deletion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),李君男(Chun-Nan Lee),林靜宜(Ching-Yi Lin) | |
| dc.subject.keyword | p6Gag蛋白質,胺基酸刪除,Vpr蛋白質, | zh_TW |
| dc.subject.keyword | p6Gag protein,amino acid deletion,Vpr protein, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202001803 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2307202021165500.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
