請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡皇龍(Huang-Lung Tsai) | |
| dc.contributor.author | Pei-Ting Tsai | en |
| dc.contributor.author | 蔡佩庭 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:15Z | - |
| dc.date.available | 2021-07-10T21:43:15Z | - |
| dc.date.copyright | 2020-07-31 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-27 | |
| dc.identifier.citation | Alabadı́, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A.J.S. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock 293, 880-883. Ausin, I., Alonso-Blanco, C., and Martinez-Zapater, J.M. (2005). Environmental regulation of flowering. Int J Dev Biol 49, 689-705. Barak, S., Tobin, E.M., Green, R.M., Andronis, C., and Sugano, S.J.T.i.p.s. (2000). All in good time: the Arabidopsis circadian clock 5, 517-522. Chang, S., Puryear, J., and Cairney, J.J.P.m.b.r. (1993). A simple and efficient method for isolating RNA from pine trees 11, 113-116. Farré, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S.A.J.C.B. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock 15, 47-54. Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C.J.C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis 107, 525-535. Goodspeed, D., Chehab, E.W., Min-Venditti, A., Braam, J., and Covington, M.F. (2012). Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci U S A 109, 4674-4677. Goodspeed, D., Liu, J.D., Chehab, E.W., Sheng, Z., Francisco, M., Kliebenstein, D.J., and Braam, J. (2013). Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling. Curr Biol 23, 1235-1241. Green, R.M., Tingay, S., Wang, Z.Y., and Tobin, E.M. (2002). Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant physiology 129, 576-584. Harmer, S.L. (2009). The circadian system in higher plants. Annu Rev Plant Biol 60, 357-377. Hecker, A., Luise, H.B., Peter, S., Simoncello, N., Kilian, J., Harter, K., Gaudin, V., and Wanke, D.J.P.P. (2015). The Arabidopsis GAGA-binding factor BPC6 recruits PRC1 component LHP1 to GAGA DNA-motifs. Hsu, P.Y., and Harmer, S.L.J.T.i.p.s. (2014). Wheels within wheels: the plant circadian system. Cell Press 19, 240-249. Hsu, P.Y., Devisetty, U.K., and Harmer, S.L.J.E. (2013). Accurate timekeeping is controlled by a cycling activator in Arabidopsis 2, e00473. Huang, H., and Nusinow, D.A.J.T.i.G. (2016). Into the evening: Complex interactions in the Arabidopsis circadian clock 32, 674-686. Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N.J.T.P.C. (2016). Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock 28, 696-711. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D.J.S. (1999). Activation tagging of the floral inducer FT 286, 1962-1965. Koornneef, M., Hanhart, C., Van der Veen, J.J.M., and MGG, G.G. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana 229, 57-66. Lau, O.S., Huang, X., Charron, J.-B., Lee, J.-H., Li, G., and Deng, X.W.J.M.c. (2011). Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock 43, 703-712. Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M.J.T.P.C. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis 6, 75-83. Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S.J.T.P.J. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter 37, 426-438. Michael, T.P., Salome, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049-1053. Monfared, M.M., Simon, M.K., Meister, R.J., Roig-Villanova, I., Kooiker, M., Colombo, L., Fletcher, J.C., and Gasser, C.S. (2011). Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. The Plant journal : for cell and molecular biology 66, 1020-1031. Mu, Y., Zou, M., Sun, X., He, B., Xu, X., Liu, Y., Zhang, L., and Chi, W. (2017). BASIC PENTACYSTEINE Proteins Repress ABSCISIC ACID INSENSITIVE4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development. Plant cell physiology 58, 607-621. Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.-H., and Sakakibara, H.J.T.P.C. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock 22, 594-605. Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S., Rosso, M.G., Ache, P., Flügge, U.-I., and Schneider, A.J.T.P.C. (2005). The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development 17, 760-775. O’Malley, R.C., Huang, S.-s.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R.J.C. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape 165, 1280-1292. Pepper, A., Delaney, T., Washburnt, T., Poole, D., and Chory, J.J.C. (1994). DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein 78, 109-116. Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A.J.S. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock 323, 1481-1485. Rawat, R., Takahashi, N., Hsu, P.Y., Jones, M.A., Schwartz, J., Salemi, M.R., Phinney, B.S., and Harmer, S.L.J.P.g. (2011). REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock 7. Sangwan, I., and O'Brian, M.R.J.P.P. (2002). Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA 129, 1788-1794. Simonini, S., and Kater, M.M. (2014). Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. J Exp Bot 65, 1455-1465. Simonini, S., Roig-Villanova, I., Gregis, V., Colombo, B., Colombo, L., and Kater, M.M. (2012). Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis. The Plant cell 24, 4163-4172. Somers, D.E., Schultz, T.F., Milnamow, M., and Kay, S.A.J.C. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis 101, 319-329. Tan, L.M., Zhang, C.J., Hou, X.M., Shao, C.R., Lu, Y.J., Zhou, J.X., Li, Y.Q., Li, L., Chen, S., and He, X.J.J.T.E.j. (2018). The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing 37, e98770. Tsai, H.-L., Lue, W.-L., Lu, K.-J., Hsieh, M.-H., Wang, S.-M., and Chen, J.J.P.p. (2009). Starch synthesis in Arabidopsis is achieved by spatial cotranscription of core starch metabolism genes 151, 1582-1595. Wang, S.m., Lue, W.l., Yu, T.s., Long, J.h., Wang, C.n., Eimert, K., and Chen, J.J.T.P.J. (1998). Characterization of ADG1, an Arabidopsis locus encoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of the small subunit is required for large subunit stability 13, 63-70. Wu, H.-Y., Liu, K.-H., Wang, Y.-C., Wu, J.-F., Chiu, W.-L., Chen, C.-Y., Wu, S.-H., Sheen, J., and Lai, E.-M.J.P.m. (2014). AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings 10, 19. Wu, J.-F., Wang, Y., and Wu, S.-H.J.P.p. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering 148, 948-959. Wu, J.F., Tsai, H.L., Joanito, I., Wu, Y.C., Chang, C.W., Li, Y.H., Wang, Y., Hong, J.C., Chu, J.W., Hsu, C.P., and Wu, S.H. (2016). LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7, 13181. Xie, Q., Wang, P., Liu, X., Yuan, L., Wang, L., Zhang, C., Li, Y., Xing, H., Zhi, L., and Yue, Z.J.T.P.C. (2014). LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator 26, 2843-2857. Yu, T.-S., Lue, W.-L., Wang, S.-M., and Chen, J.J.P.p. (2000). Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation 123, 319-326. Yu, T.-S., Kofler, H., Häusler, R.E., Hille, D., Flügge, U.-I., Zeeman, S.C., Smith, A.M., Kossmann, J., Lloyd, J., and Ritte, G.J.T.P.C. (2001). The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter 13, 1907-1918. Zhang, C., Xie, Q., Anderson, R.G., Ng, G., Seitz, N.C., Peterson, T., McClung, C.R., McDowell, J.M., Kong, D., Kwak, J.M., and Lu, H. (2013). Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS pathogens 9, e1003370. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77010 | - |
| dc.description.abstract | 植物體內的「生物時鐘 (circadian clock) 」能藉由接受光照時間與外界溫度的規律變化來感知日夜週期的節律,使得植物因應瞬息萬變的環境時,仍能維持在最適當的季節生長與發育。BASIC PENTACYSTEINE (BPC)家族是植物特有的轉錄因子,已知缺乏BPCs時在生長與發育過程中會產生多重的缺陷。先前研究顯示BPC 成員BPC1、BPC2、BPC4和BPC6會共同拮抗BPC3。本研究中藉由分析BPC3 在bpc1-1 bpc2 bpc4 bpc6 (bpc1246)四重突變株中的表現發現其轉錄產物累積變高,進一步檢測阿拉伯芥生物時鐘核心基因的表現,發現CCA1、PRR9、PRR7、 PRR5、PRR3、ELF4、TOC1表現相位明顯延遲,時鐘下游光週期開花途徑的CO表現時相位也因延遲而使FT 表現量降低。另一方面,自主性開花途徑抑制開花之FLC表現則受抑制,其下游的SOC1表現增加。本研究顯示缺少BPC1、BPC2、BPC4和BPC6,使得BPC3不受拮抗的情況下,兩個主要開花調控的機制同時失去正常調控,顯見BPC轉錄因子以多重調控途徑控制植物生長與發育。本論文亦試圖了解BPC3表現的調控機制,透過酵母菌單雜交篩選,我們找到可能會與BPC3的啟動子有交互作用轉錄因子,目前正嘗試以不同實驗方法驗證轉錄因子的篩選結果。 | zh_TW |
| dc.description.abstract | Plant internal ‘circadian clock’ receives the external fluctuations such as light and temperature to be coordinated with the rhythms of day and night. The circadian clock therefore would keep plants on a track leading to suitable propagation even their rhythms had been randomly interfered. The members of BASIC PENTACYSTEINE (BPC) family are plant-specific transcription factors required for multiple pathways in growth and development. Previous studies have shown that BPC members function overlapping and antagonistically as BPC1, BPC2, BPC4 and BPC6 redundantly antagonize BPC3 during the vegetative growth. By profiling the expression of genes involved in different physiological pathways in the quadruple mutant bpc1-1 bpc2 bpc4 bpc6 (bpc1246), we found that the BPC3 transcript level was over accumulated. In addition, core genes of the circadian clock including CCA1, PRR9, PRR7, PRR5, PRR3, ELF4 and TOC1 were phase-delayed. Consequently, the downstream CO in photoperiodic pathway was also delayed and led a decrease of FT level. We also examined the expression level of FLC, main repressor of flowering in the autonomous pathway. FLC is significantly decreased in bpc1246, and the downstream target SOC1 is increased. Our results revealed that the insufficient antagonization of BPC3 transcription in bpc1246 have simultaneously impeded photoperiodic and autonomous pathways for flowering time control. This indicated that BPC family regulates plant growth and development via multiple pathways. The regulation of BPC3 expression is also preliminarily studied by conducting yeast one-hybrid for finding regulators of the BPC3 promoter. We are currently validating the potential transcription factors for BPC3 expression via various approaches. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:15Z (GMT). No. of bitstreams: 1 U0001-2407202012100000.pdf: 3034697 bytes, checksum: 811d26eddebb35bdb18346de87a51ef6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii LIST OF SUPPLEMENTARY FIGURES viii Chapter 1 Introduction 1 1.1 Circadian clock in Arabidopsis 1 1.2 BPC family members function in circadian clock 3 Chapter 2 Materials and Methods 5 2.1 Plant materials and growth conditions 5 2.2 RNA preparation 5 2.3 Reverse transcription and qRT-PCR 6 2.4 Yeast cell transformation (LiAc transformation procedure) 6 2.5 Polymerase chain reaction (PCR) 7 2.6 Colony PCR 9 2.7 Plastid DNA extraction 10 2.8 Gel extraction 11 2.9 PCR clean up 12 2.10 Escherichia coli competent cell transformation 13 2.11 DNA digestion 13 2.12 Agrobacterium-mediated enhanced seedling transformation (AGROBEST) 14 2.13 Arabidopsis seedling protein preparation 16 Chapter 3 Results 20 3.1 The transcript level of BPC3 was increased in bpc1246 20 3.2 The clock gene were phase-delayed in bpc1246 mutant 20 3.3 The regulation of flowering in bpc1246 mutants 21 3.4 The transcriptional regulation of BPC3 promoter 23 3.4.1 Yeast one-hybrid screening for BPC3 promoter interaction factors 23 3.4.2 Candidates for BPC3 promoter binding factors obtained from DAP-seq database 23 3.4.3 Validation for large-scale yeast one-hybrid results 24 3.4.4 Obtaining T-DNA insertion mutants for BPC3 promoter binding factors 24 3.4.5 Transgenetic plants for BPC3 promoter activity 25 Chapter 4 DISCUSSION 26 Chapter 5 Appendix Project 29 REFERENCE 31 Table 34 Figure 41 Supplementary figure 49 | |
| dc.language.iso | en | |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | BASIC PENTACYSTEINE | zh_TW |
| dc.subject | 生物時鐘 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | BASIC PENTACYSTEINE (BPC) | en |
| dc.subject | circadian clock | en |
| dc.subject | flowering | en |
| dc.subject | Arabidopsis | en |
| dc.title | BASIC PENTACYSTEINE對阿拉伯芥發育分子機制之影響研究 | zh_TW |
| dc.title | A study of BASIC PENTACYSTEINE involved molecular mechanism of Arabidopsis development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林盈仲(Ying-Chung Jimmy Lin),陳賢明(Hieng-Ming Ting),林信宏(Hsin-Hung Lin) | |
| dc.subject.keyword | BASIC PENTACYSTEINE,生物時鐘,開花,阿拉伯芥, | zh_TW |
| dc.subject.keyword | BASIC PENTACYSTEINE (BPC),circadian clock,flowering,Arabidopsis, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202001818 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2407202012100000.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
