請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元(Thai-Yen Ling) | |
| dc.contributor.author | Hao-Pin Wu | en |
| dc.contributor.author | 吳浩彬 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:43:02Z | - |
| dc.date.available | 2021-07-10T21:43:02Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.citation | 1. Fahy, J. V., Dickey, B. F. (2010). Airway mucus function and dysfunction. N Engl J Med, 363(23), 2233-2247. doi:10.1056/NEJMra0910061 2. Williams, M. C. (2003). Alveolar type I cells: molecular phenotype and development. Annu Rev Physiol, 65, 669-695. doi:10.1146/annurev.physiol.65.092101.142446 3. Fehrenbach, H. (2001). Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res, 2(1), 33-46. doi:10.1186/rr36 4. Dobbs, L. G., Gonzalez, R., Matthay, M. A., Carter, E. P., Allen, L., Verkman, A. S. (1998). Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Proc Natl Acad Sci U S A, 95(6), 2991-2996. doi:10.1073/pnas.95.6.2991 5. Burri, P. H. (1984). Fetal and postnatal development of the lung. Annu Rev Physiol, 46, 617-628. doi:10.1146/annurev.ph.46.030184.003153 6. Wells, J. M., Melton, D. A. (1999). Vertebrate endoderm development. Annu Rev Cell Dev Biol, 15, 393-410. doi:10.1146/annurev.cellbio.15.1.393 7. Morrisey, E. E., Hogan, B. L. (2010). Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell, 18(1), 8-23. doi:10.1016/j.devcel.2009.12.010 8. Herriges, M., Morrisey, E. E. (2014). Lung development: orchestrating the generation and regeneration of a complex organ. Development, 141(3), 502-513. doi:10.1242/dev.098186 9. Lee, J. H., Rawlins, E. L. (2018). Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol, 433(2), 166-176. doi:10.1016/j.ydbio.2017.09.016 10. Quan, Y., Wang, D. (2014). Clinical potentials of human pluripotent stem cells in lung diseases. Clin Transl Med, 3, 15. doi:10.1186/2001-1326-3-15 11. Ghaedi, M., Niklason, L. E., Williams, J. (2015). Development of Lung Epithelium from Induced Pluripotent Stem Cells. Curr Transplant Rep, 2(1), 81-89. doi:10.1007/s40472-014-0039-0 12. Langfelder, P., Cantle, J. P., Chatzopoulou, D., Wang, N., Gao, F., Al-Ramahi, I., Yang, X. W. (2016). Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci, 19(4), 623-633. doi:10.1038/nn.4256 13. Rock, J. R., Onaitis, M. W., Rawlins, E. L., Lu, Y., Clark, C. P., Xue, Y., Hogan, B. L. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A, 106(31), 12771-12775. doi:10.1073/pnas.0906850106 14. Rock, J. R., Gao, X., Xue, Y., Randell, S. H., Kong, Y. Y., Hogan, B. L. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8(6), 639-648. doi:10.1016/j.stem.2011.04.003 15. Hackett, N. R., Shaykhiev, R., Walters, M. S., Wang, R., Zwick, R. K., Ferris, B., Crystal, R. G. (2011). The human airway epithelial basal cell transcriptome. PLoS One, 6(5), e18378. doi:10.1371/journal.pone.0018378 16. Watson, N. F., Badr, M. S., Belenky, G., Bliwise, D. L., Buxton, O. M., Buysse, D., Tasali, E. (2015). Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep, 38(6), 843-844. doi:10.5665/sleep.4716 17. Reddy, R., Buckley, S., Doerken, M., Barsky, L., Weinberg, K., Anderson, K. D., Driscoll, B. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol, 286(4), L658-667. doi:10.1152/ajplung.00159.2003 18. Desai, T. J., Brownfield, D. G., Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 507(7491), 190-194. doi:10.1038/nature12930 19. Ling, T. Y., Liu, Y. L., Huang, Y. K., Gu, S. Y., Chen, H. K., Ho, C. C., Lin, F. H. (2014). Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin--microbubble scaffold. Biomaterials, 35(22), 5660-5669. doi:10.1016/j.biomaterials.2014.03.074 20. Weiss, A., Attisano, L. (2013). The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2(1), 47-63. doi:10.1002/wdev.86 21. Zimmerman, C. M., Padgett, R. W. (2000). Transforming growth factor beta signaling mediators and modulators. Gene, 249(1-2), 17-30. doi:10.1016/s0378-1119(00)00162-1 22. Morikawa, M., Derynck, R., Miyazono, K. (2016). TGF-beta and the TGF-beta Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol, 8(5). doi:10.1101/cshperspect.a021873 23. Grande, J. P. (1997). Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med, 214(1), 27-40. doi:10.3181/00379727-214-44066 24. Bartram, U., Speer, C. P. (2004). The Role of Transforming Growth Factor β in Lung Development and Disease. Chest, 125(2), 754-765. doi:10.1378/chest.125.2.754 25. Massaous, J., Hata, A. (1997). TGF-beta signalling through the Smad pathway. Trends Cell Biol, 7(5), 187-192. doi:10.1016/S0962-8924(97)01036-2 26. Neuzillet, C., de Gramont, A., Tijeras-Raballand, A., de Mestier, L., Cros, J., Faivre, S., Raymond, E. (2014). Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget, 5(1), 78-94. doi:10.18632/oncotarget.1569 27. Saito, A., Horie, M., Nagase, T. (2018). TGF-beta Signaling in Lung Health and Disease. Int J Mol Sci, 19(8). doi:10.3390/ijms19082460 28. Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693-699. doi:10.1038/359693a0 29. Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Karlsson, S. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A, 90(2), 770-774. doi:10.1073/pnas.90.2.770 30. Sanford, L. P., Ormsby, I., Gittenberger-de Groot, A. C., Sariola, H., Friedman, R., Boivin, G. P., Doetschman, T. (1997). TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 124(13), 2659-2670. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9217007 31. Kaartinen, V., Voncken, J. W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N., Groffen, J. (1995). Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 11(4), 415-421. doi:10.1038/ng1295-415 32. Taya, Y., O'Kane, S., Ferguson, M. W. (1999). Pathogenesis of cleft palate in TGF-beta3 knockout mice. Development, 126(17), 3869-3879. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10433915 33. Xing, Y., Li, C., Li, A., Sridurongrit, S., Tiozzo, C., Bellusci, S., Minoo, P. (2010). Signaling via Alk5 controls the ontogeny of lung Clara cells. Development, 137(5), 825-833. doi:10.1242/dev.040535 34. Li, M., Krishnaveni, M. S., Li, C., Zhou, B., Xing, Y., Banfalvi, A., Minoo, P. (2011). Epithelium-specific deletion of TGF-beta receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest, 121(1), 277-287. doi:10.1172/JCI42090 35. Li, M., Li, C., Liu, Y. H., Xing, Y., Hu, L., Borok, Z., Minoo, P. (2008). Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways. J Biol Chem, 283(52), 36257-36264. doi:10.1074/jbc.M806786200 36. Zhou, L., Dey, C. R., Wert, S. E., Whitsett, J. A. (1996). Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta 1 chimeric gene. Dev Biol, 175(2), 227-238. doi:10.1006/dbio.1996.0110 37. Lederer, D. J., Martinez, F. J. (2018). Idiopathic Pulmonary Fibrosis. N Engl J Med, 378(19), 1811-1823. doi:10.1056/NEJMra1705751 38. Chambers, R. C., Mercer, P. F. (2015). Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann Am Thorac Soc, 12 Suppl 1, S16-20. doi:10.1513/AnnalsATS.201410-448MG 39. Thannickal, V. J., Toews, G. B., White, E. S., Lynch, J. P., 3rd, Martinez, F. J. (2004). Mechanisms of pulmonary fibrosis. Annu Rev Med, 55, 395-417. doi:10.1146/annurev.med.55.091902.103810 40. Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., Frangogiannis, N. G. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res, 107(3), 418-428. doi:10.1161/CIRCRESAHA.109.216101 41. Walton, K. L., Johnson, K. E., Harrison, C. A. (2017). Targeting TGF-beta Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol, 8, 461. doi:10.3389/fphar.2017.00461 42. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem, 275(47), 36803-36810. doi:10.1074/jbc.M005912200 43. Ding, Q., Subramanian, I., Luckhardt, T. R., Che, P., Waghray, M., Zhao, X. K., Thannickal, V. J. (2017). Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol, 312(6), L926-L935. doi:10.1152/ajplung.00121.2016 44. Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A, 103(35), 13180-13185. doi:10.1073/pnas.0605669103 45. Yang, J., Liu, Y. (2001). Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 159(4), 1465-1475. doi:10.1016/S0002-9440(10)62533-3 46. Upadhyay, S., Palmberg, L. (2018). Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol Sci, 164(1), 21-30. doi:10.1093/toxsci/kfy053 47. Nalayanda, D. D., Puleo, C., Fulton, W. B., Sharpe, L. M., Wang, T. H., Abdullah, F. (2009). An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices, 11(5), 1081-1089. doi:10.1007/s10544-009-9325-5 48. Pezzulo, A. A., Starner, T. D., Scheetz, T. E., Traver, G. L., Tilley, A. E., Harvey, B. G., Zabner, J. (2011). The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol, 300(1), L25-31. doi:10.1152/ajplung.00256.2010 49. van Riet, S., Ninaber, D. K., Mikkers, H. M. M., Tetley, T. D., Jost, C. R., Mulder, A. A., Hiemstra, P. S. (2020). In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Sci Rep, 10(1), 5499. doi:10.1038/s41598-020-62226-1 50. Proetzel, G., Pawlowski, S. A., Wiles, M. V., Yin, M., Boivin, G. P., Howles, P. N., Doetschman, T. (1995). Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 11(4), 409-414. doi:10.1038/ng1295-409 51. Bolt, R. J., van Weissenbruch, M. M., Lafeber, H. N., Delemarre-van de Waal, H. A. (2001). Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol, 32(1), 76-91. doi:10.1002/ppul.1092 52. Sardesai, S., Biniwale, M., Wertheimer, F., Garingo, A., Ramanathan, R. (2017). Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatr Res, 81(1-2), 240-248. doi:10.1038/pr.2016.203 53. Wang, Y., Frank, D. B., Morley, M. P., Zhou, S., Wang, X., Lu, M. M., Morrisey, E. E. (2016). HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-beta Signaling Regulation. Dev Cell, 36(3), 303-315. doi:10.1016/j.devcel.2015.12.031 54. Olmeda, B., Villen, L., Cruz, A., Orellana, G., Perez-Gil, J. (2010). Pulmonary surfactant layers accelerate O(2) diffusion through the air-water interface. Biochim Biophys Acta, 1798(6), 1281-1284. doi:10.1016/j.bbamem.2010.03.008 55. Wemhoner, A., Jennings, P., Haller, T., Rudiger, M., Simbruner, G. (2011). Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells. BMC Pulm Med, 11, 11. doi:10.1186/1471-2466-11-11 56. Borie, R., Danel, C., Debray, M. P., Taille, C., Dombret, M. C., Aubier, M., Crestani, B. (2011). Pulmonary alveolar proteinosis. Eur Respir Rev, 20(120), 98-107. doi:10.1183/09059180.00001311 57. Snoeck, H. W. (2015). Modeling human lung development and disease using pluripotent stem cells. Development, 142(1), 13-16. doi:10.1242/dev.115469 58. Lin, T. R., Yeh, S. L., Peng, C. C., Liao, W. H., Tung, Y. C. (2019). Study Effects of Drug Treatment and Physiological Physical Stimulation on Surfactant Protein Expression of Lung Epithelial Cells Using a Biomimetic Microfluidic Cell Culture Device. Micromachines (Basel), 10(6). doi:10.3390/mi10060400 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77003 | - |
| dc.description.abstract | 肺泡是呼吸系統中進行氣體交換的場所。肺泡由兩種細胞所構成: 第一型肺泡細胞(type I alveolar cell)為扁平狀細胞,佔肺部總表面積95%以上。上面分布許多微血管,負責肺泡與微血管之間的氣體交換。第二型肺泡細胞(type Ⅱ alveolar cell)成柱狀。可分泌表面張力素(surfactant),防止肺泡塌陷。 相對於第二型肺泡細胞,第一型肺泡細胞因為缺乏有效的分離方法,使得相關的研究十分有限。而在先前的研究中,我們從新生小鼠的肺部中發現了一群肺臟幹/先驅細胞族群,這群細胞會表現具有特異性的細胞標誌,柯薩奇病毒/腺病毒受體(CXADR),利用此細胞標誌可以分離出此細胞族群,並將其命名為mPSCsCXADR+。這群細胞在培養七到十天後會分化成近似於第I型肺泡上皮細胞。透過乙型轉化生長因子-3基因剔除小鼠(TGFβ-3 knockout mice),我們證實了發育過程中TGFβ-3的喪失會抑制第一型肺泡細胞的擴張並進一步導致肺部發育不全。然而,TGFβ-3也將誘導纖維化病理特徵的α-SMA表現量上升,我們的研究發現TGFβ-3在特定時間點的開/關調節對於肺部先驅細胞能否正確分化為第一型肺泡細胞至關重要。 同時,為了能夠更模擬肺部的生理環境,我們將氣液相 (Air-liquid interface, ALI) 細胞培養應用於mPSCs/CXADR+分化的第一型肺泡細胞。我們透過一系列的改良,包括表面張力素並與基質細胞共同培養,從而建立更加適合的仿生ALI模型。我們比較了在不同ALI條件下生長的第一型肺泡細胞,發現在改良後的ALI模型中,第一型肺泡細胞特異性表達的基因表現量以及細胞存活率皆上升。最後,我們預期能將mPSCs/CXADR+分化的第一型肺泡細胞應用致仿生微流體裝置,並重建肺部的生理微環境,以研究第一型肺泡細胞中氣體交換的功能與機制。 | zh_TW |
| dc.description.abstract | Alveoli are tiny balloon shaped structures where gas exchange takes place. It consists of only two types of epithelial cells: alveolar type I II cells. Alveolar type I (AT1) cells are thin and flat in structure, covering 95% of the alveolar surface and involving in the process of gas exchange between alveoli and blood. Alveolar type II (AT2) cells, which are cuboid in shape, release pulmonary surfactant to sustain the surface tension. Although AT1 cells play a critical role in the process of respiration, we have little understanding of the function and regulation of AT1 cells, comparing to its neighbor, the AT2 cells. The limitation of the studies of AT1 cells is due to the lack of a suitable method to isolate the cells for further studies. Recently, we have established a cell model for the studies of AT1 cells. We have identified a rare population of mouse pulmonary stem/progenitor cells (mPSCs), which exclusively expressed a specific cell surface marker coxsackievirus/adenovirus receptor (CAR) in our serum-free culture system. This mPSCsCAR+ were then able to differentiate into AT1-like cells in 7-10 days. In lung development, the process of alveoli differentiation is coupled with a dramatic expansion of the cell surface area. The mPSCsCAR+ derived AT1 cells from transforming growth factor β-3 (TGF-β3) knockout mice indicated that the loss of TGF-β3 during the early stage of lung epithelium differentiation impeded the spreading of AT1cells. Moreover, the expression of TGF-β3 would also induce the expression of α-SMA, which was indicated as a pathologic marker of pulmonary fibrosis. Our studies revealed that TGF-β3 on/off regulation at a critical timing was important for the proper remodeling and expansion of the lung progenitor into AT1 cells. In this study, we also introduced the air-liquid interface (ALI) cell culture to mPSCsCAR+ derived AT1 cells. ALI culture, defined as the basal surface of the cells in contact with liquid culture medium while the apical surface directly exposed to air, is an in vitro organotypic model that can nearly resemble in vivo situations. We made a series of improvement, including the applying of surfactant and co-cultured with stromal cells, to make a more biomimetic model for mPSCsCAR+ derived AT1 cells. We compared the gene expression profile of mPSCsCAR+ derived AT1 cells grown at the different ALI condition, and we found that the gene expression of AT1 cell markers as well as the cell viability was up-regulated. Moreover, we expect to apply the mPSCsCAR+ derived AT1 cells to the biomimetic microfluidic devices, and reconstitute physiological microenvironment in lung to investigate the function and regulation of gas exchange in AT1 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:43:02Z (GMT). No. of bitstreams: 1 U0001-2707202013234200.pdf: 13280711 bytes, checksum: f8b7193f40799668e02399fef3a50ec8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Chapter.1 Introduction 1 1.1 Cellular composition of the respiratory system 2 1.2 Lung development 2 1.3 Stem cell in the lung 4 1.4 CAR+ mouse pulmonary stem/progenitor cells (mPSCsCAR+) 5 1.5 The unique of mPSCsCAR+ derived AT1 cells 6 1.6 TGF-β signal pathway 7 1.7 TGF-β regulate lung development 9 1.9 Regulation of TGF-β in the differentiation process of mPSCsCAR+ 11 1.10 Limitation of current lung model 12 1.11 Air-liquid interface culture 12 1.12 Aim of study 13 Chapter.2 Materials and Methods 15 2.1 Mice (Mus Musculus) 16 2.2 Primary culture of mPSCsCAR+ 16 2.3 mPSCsCAR+ isolation and in vitro differentiation 17 2.4 Air-liquid interface culture 18 2.5 Immunofluorescence staining 19 2.6 Real time qPCR and primers 19 2.7 Reagents 20 2.8 Antibodies 21 2.9 Data analysis 21 Chapter.3 Results 22 3.1 mPSCsCAR+ differentiate into AT1-like cells 23 3.2 Time course TGF-β expression corresponding TGF-β inhibiting treatment 24 3.3 Defective lung development in TGF-β-3 KO mice 25 3.4 AT1 cells spreading is impeded in TGF-β-3 KO mice 26 3.5 Biomimetic lung model: Air-liquid interface culture 28 3.6 Optimize ALI culture through various culture conditions 29 3.7 Surfactant in certain concentrations improves cell growth in ALI 30 Chapter.4 Figures and Legends 32 Figure 1. mPSCsCAR+ differentiate into AT1 cells. 33 Figure 2. Time course TGF-β expression and corresponding inhibiting treatment. 37 Figure 3. Defective lung development in TGF-β-3 knockout mice. 40 Figure 4. AT1 cells spreading is impeded in TGF-β-3 knockout mice. 42 Figure 5. Biomimetic lung model: Air-liquid interface culture. 47 Figure 6. Optimize ALI culture through various culture conditions. 50 Figure 7. Pulmonary surfactant in certain concentrations covering the apical surface of AT1 improves cell growth in ALI. 53 Chapter.5 Tables 57 Table 1. List of AT1 cells related researches 58 Table 2. List of gene primers used in this article 59 Chapter.6 Discussion 60 6.1 Role of TGF-β in lung differentiation and AT1 cell spreading evidenced by TGF-β-3 knockout mice 61 6.2 Air-liquid interface culture of AT1 cells as the biomimetic model 62 6.3 Pulmonary surfactant layers in a certain range of concentration facilitates cell viability in ALI culture 63 6.4 Further applications of ALI model 64 Chapter.7 References 65 | |
| dc.language.iso | en | |
| dc.subject | 乙型轉化生長因子 | zh_TW |
| dc.subject | 肺臟幹/先驅細胞 | zh_TW |
| dc.subject | 第I型肺泡細胞 | zh_TW |
| dc.subject | 氣液相細胞培養 | zh_TW |
| dc.subject | alveolar type I cells | en |
| dc.subject | pulmonary stem/progenitor cells | en |
| dc.subject | air-liquid interface | en |
| dc.subject | transforming growth factor | en |
| dc.title | 第3型乙型轉化生長因子於第Ⅰ型肺泡細胞形態之調節及仿生性氣液相細胞培養於第Ⅰ型肺泡細胞之應用 | zh_TW |
| dc.title | The Role of TGF-β3 in the Morphogenesis of Alveolar Type I Cells and Application within Air-Liquid Interface Culture for the Biomimetic Approach toward Alveolar Modeling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹伯年(Po-Nien Tsao),陳惠文(Huei-Wen Chen),董奕鍾(Yi-Chung Tung),郭青齡(Chin-Lin Guo) | |
| dc.subject.keyword | 肺臟幹/先驅細胞,第I型肺泡細胞,乙型轉化生長因子,氣液相細胞培養, | zh_TW |
| dc.subject.keyword | pulmonary stem/progenitor cells,alveolar type I cells,transforming growth factor,air-liquid interface, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202001902 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202013234200.pdf 未授權公開取用 | 12.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
