請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱清良(Ching-Liang Chu) | |
| dc.contributor.author | Jenn-Yeu Shin | en |
| dc.contributor.author | 忻振宇 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:53Z | - |
| dc.date.available | 2021-07-10T21:42:53Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-29 | |
| dc.identifier.citation | 1. Kuo, C.L. et al. Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett 474, 138-150 (2020). 2. Wang, N., Gottesman, S., Willingham, M.C., Gottesman, M.M. Maurizi, M.R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A 90, 11247-11251 (1993). 3. Fredriksson, Å., Ballesteros, M., Dukan, S. Nyström, T. Defense against Protein Carbonylation by DnaK/DnaJ and Proteases of the Heat Shock Regulon. Journal of Bacteriology 187, 4207 (2005). 4. Watabe, S. et al. In vitro degradation of mitochondrial proteins by ATP-dependent protease in bovine adrenal cortex. J Biochem 113, 672-676 (1993). 5. Bota, D.A. Davies, K.J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4, 674-680 (2002). 6. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122 (2007). 7. Kao, T.Y. et al. Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 6, e1642 (2015). 8. Lu, B. et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49, 121-132 (2013). 9. Pinti, M. et al. Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 11, 200-206 (2011). 10. Cheng, C.W. et al. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4, e681 (2013). 11. Kuo, C.-Y., Chiu, Y.-C., Lee, A.Y.-L. Hwang, T.-L. Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia. Mitochondrion 23, 7-16 (2015). 12. Quiros, P.M. et al. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8, 542-556 (2014). 13. Steinman, R.M. Decisions About Dendritic Cells: Past, Present, and Future. Annual Review of Immunology 30, 1-22 (2012). 14. Pulendran, B. The Varieties of Immunological Experience: Of Pathogens, Stress, and Dendritic Cells. Annual Review of Immunology 33, 563-606 (2015). 15. Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Reviews Immunology 3, 984-993 (2003). 16. Tacken, P.J., de Vries, I.J.M., Torensma, R. Figdor, C.G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Reviews Immunology 7, 790-802 (2007). 17. Steinman, R.M., Hawiger, D. Nussenzweig, M.C. Tolerogenic Dendritic Cells. Annual Review of Immunology 21, 685-711 (2003). 18. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. Enk, A.H. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159, 4772-4780 (1997). 19. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J. Enk, A.H. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 99, 2468-2476 (2002). 20. Seeger, P., Musso, T. Sozzani, S. The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Reviews 26, 647-657 (2015). 21. Vieira, P.L., Kalinski, P., Wierenga, E.A., Kapsenberg, M.L. de Jong, E.C. Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161, 5245-5251 (1998). 22. Rozkova, D., Horvath, R., Bartunkova, J. Spisek, R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol 120, 260-271 (2006). 23. Penna, G. et al. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106, 3490-3497 (2005). 24. Svajger, U. Rozman, P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Frontiers in Immunology 9 (2018). 25. Mozo, L., Suarez, A. Gutierrez, C. Glucocorticoids up-regulate constitutive interleukin-10 production by human monocytes. Clin Exp Allergy 34, 406-412 (2004). 26. Zizzo, G., Hilliard, B.A., Monestier, M. Cohen, P.L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. Journal of immunology (Baltimore, Md. : 1950) 189, 3508-3520 (2012). 27. Ramirez, F., Fowell, D.J., Puklavec, M., Simmonds, S. Mason, D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156, 2406-2412 (1996). 28. Franchimont, D. et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 164, 1768-1774 (2000). 29. Weikum, E.R., Knuesel, M.T., Ortlund, E.A. Yamamoto, K.R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nature Reviews Molecular Cell Biology 18, 159-174 (2017). 30. Ronchetti, S., Migliorati, G. Riccardi, C. GILZ as a Mediator of the Anti-Inflammatory Effects of Glucocorticoids. Frontiers in Endocrinology 6 (2015). 31. Strehl, C. Buttgereit, F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 380, 32-40 (2013). 32. Ayroldi, E. et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor κB. Blood 98, 743-753 (2001). 33. Hamdi, H. et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 110, 211-219 (2007). 34. Cohen, N. et al. GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 107, 2037-2044 (2006). 35. Fallarino, F. et al. The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. The Journal of Immunology 176, 6752 (2006). 36. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of experimental medicine 192, 1027-1034 (2000). 37. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2, 261-268 (2001). 38. Munder, M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158, 638-651 (2009). 39. Chang, C.-I., Liao, J.C. Kuo, L. Arginase modulates nitric oxide production in activated macrophages. American Journal of Physiology-Heart and Circulatory Physiology 274, H342-H348 (1998). 40. Pesce, J.T. et al. Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog 5, e1000393-e1000393 (2009). 41. Nair, M.G. et al. Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. The Journal of experimental medicine 206, 937-952 (2009). 42. Yoshimura, A., Naka, T. Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7, 454-465 (2007). 43. Raes, G. et al. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. Journal of Leukocyte Biology 71, 597-602 (2002). 44. Wculek, S.K., Khouili, S.C., Priego, E., Heras-Murillo, I. Sancho, D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology 10 (2019). 45. Kelly, B. O'Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research 25, 771-784 (2015). 46. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nature immunology 15, 323-332 (2014). 47. Ryan, D.G. O'Neill, L.A.J. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett 591, 2992-3006 (2017). 48. Malinarich, F. et al. High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells. The Journal of Immunology 194, 5174 (2015). 49. Rehman, A. et al. Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol 190, 4640-4649 (2013). 50. O'Neill, L.A. Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213, 15-23 (2016). 51. Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 189, 2151-2158 (2012). 52. Ma, T., Copland, J.A., Brasier, A.R. Thompson, E.A. A novel glucocorticoid receptor binding element within the murine c-myc promoter. Mol Endocrinol 14, 1377-1386 (2000). 53. Pello, O.M. et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119, 411-421 (2012). 54. Berrebi, D. et al. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101, 729-738 (2003). 55. Vétillard, M. Schlecht-Louf, G. Glucocorticoid-Induced Leucine Zipper: Fine-Tuning of Dendritic Cells Function. Front Immunol 9, 1232 (2018). 56. He, P. et al. Serum- and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids. Molecular Biology of the Cell 22, 3812-3825 (2011). 57. Zhou, H. et al. Inhibition of serum- and glucocorticoid-inducible kinase 1 enhances TLR-mediated inflammation and promotes endotoxin-driven organ failure. Faseb j 29, 3737-3749 (2015). 58. Teng, H. et al. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 110, 12679-12684 (2013). 59. Piantadosi, C.A. et al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 286, 16374-16385 (2011). 60. Dinkova-Kostova, A.T. Talalay, P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501, 116-123 (2010). 61. Kimura, A. et al. NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation. J Exp Med 215, 2197-2209 (2018). 62. García-González, P.A. et al. Dexamethasone and Monophosphoryl Lipid A Induce a Distinctive Profile on Monocyte-Derived Dendritic Cells through Transcriptional Modulation of Genes Associated With Essential Processes of the Immune Response. Frontiers in Immunology 8 (2017). 63. Weber-Nordt, R.M. et al. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J Biol Chem 271, 27954-27961 (1996). 64. Corinti, S., Albanesi, C., la Sala, A., Pastore, S. Girolomoni, G. Regulatory Activity of Autocrine IL-10 on Dendritic Cell Functions. The Journal of Immunology 166, 4312 (2001). 65. Yin, X., Giap, C., Lazo, J.S. Prochownik, E.V. Low molecular weight inhibitors of Myc–Max interaction and function. Oncogene 22, 6151-6159 (2003). 66. Bourgeois, S., Pfahl, M. Baulieu, E.E. DNA binding properties of glucocorticosteroid receptors bound to the steroid antagonist RU-486. The EMBO Journal 3, 751-755 (1984). 67. Sim, W.J., Ahl, P.J. Connolly, J.E. Metabolism Is Central to Tolerogenic Dendritic Cell Function. Mediators of Inflammation 2016, 2636701 (2016). 68. Piemonti, L. et al. Glucocorticoids Affect Human Dendritic Cell Differentiation and Maturation. The Journal of Immunology 162, 6473 (1999). 69. Ma, W. et al. Dexamethasone Inhibits IL-12p40 Production in Lipopolysaccharide-Stimulated Human Monocytic Cells by Down-Regulating the Activity of c-Jun N-Terminal Kinase, the Activation Protein-1, and NF-κB Transcription Factors. The Journal of Immunology 172, 318 (2004). 70. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683-765 (2001). 71. Pouysségur, J., Dayan, F. Mazure, N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437-443 (2006). 72. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180, 4697-4705 (2008). 73. Zhou, R., Yazdi, A.S., Menu, P. Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011). 74. Lu, B. et al. Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282, 17363-17374 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76998 | - |
| dc.description.abstract | 主要分布在粒線體基質的Lon蛋白酶扮演相當多角色,最主要的功能是分解粒線體中受損的蛋白。大多數關於Lon的研究顯示,過度表達Lon蛋白酶可以促使癌細胞增生、減緩細胞凋亡,甚至促使轉移的發生。然而,尚未有研究關注Lon如何調節免疫細胞。李岳倫老師團隊的初步數據顯示,具有抗發炎特性的M2a和M2c這兩類巨噬細胞中,Lon蛋白酶表現上升。根據此現象,我們認為Lon蛋白酶在調節型樹突細胞中,也會被誘導而表達。首先,我們透過篩選找出潛在的刺激物能夠同時培養出調節型樹突細胞,也能高度誘導Lon蛋白酶表現。其中,我們觀察到藥物地塞米松能達到上述的效果。接著,我們調整培養條件去確認骨髓衍生樹突細胞中,地塞米松能誘導Lon蛋白酶表現上升。我們列出了潛在的候選基因,來解答地塞米松和Lon蛋白酶之間的訊息路徑,發現GILZ和STAT3有參與其中。最後,我們使用粒線體電子傳遞鏈的抑制劑,發現抑制氧化磷酸化會降低抗發炎的指標。我們推測,經由地塞米松誘導的Lon蛋白酶促使樹突細胞改變代謝路徑,造成電子傳遞鏈中的氧化酶表現上升,而旺盛的氧化磷酸化則再影響了調節型的表現型和功能。 | zh_TW |
| dc.description.abstract | Lon protease, encoded by Lonp1 gene in nucleus, plays multiple roles in mitochondrial matrix. The main function of Lon protease is degradation of damaged proteins. The majority of Lon studies have demonstrated that overexpression of Lon protease promotes the proliferation, anti-apoptosis, and epithelial-mesenchymal transition (EMT) of cancer cells. However, the role of Lon in regulating immune cell has not been reported. Preliminary data from Dr. Lee group showed that Lonp1 expression was up-regulated in M2a and M2c macrophages, which possess anti-inflammatory phenotypes. Hence, we propose that Lon could also be induced in regulatory type of dendritic cells (regDCs). First of all, we managed to find the inducer for Lonp1 expression by screening different stimuli for regDC generation. Then, we observed that Lonp1 expression was highly induced in Dexamethasone (DEX)-treated bone marrow-derived dendritic cells (BMDCs). Next, we modified culturing protocol and confirmed the upregulation of Lon induced by DEX in BMDCs. In addition, we found that glucocorticoid-induced leucine zipper (GILZ) and signal transducer and activator of transcription 3 (STAT3) may take part in this signaling pathway. Last, we tried to study the role of Lon in the phenotype and function of DEX-induced regDCs. Inhibition of oxidative phosphorylation (OXPHOS) would affect M2/regDC-associated genes in DEX-induced regDCs, which suggests that metabolic pathway would affect regulatory phenotypes. We propose that the upregulation of Lon may promote OXPHOS through activation of different subunits of cytochrome c oxidase (COXs) and contribute to the regulatory phenotype. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:53Z (GMT). No. of bitstreams: 1 U0001-2807202014260500.pdf: 2673886 bytes, checksum: f3f372dceb74a9d76dcd1907e8e8fc00 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Content v Figures Content vi Tables content viii Chapter 1. Introduction 1 1.1 Lon protease 1 1.2 Dendritic cells and regulatory dendritic cells 2 1.3 Dexamethasone 4 1.4 M2/regDC-associated genes 5 1.5 Metabolic pathways in dendritic cells 6 Chapter 2. Rationale and specific aims 8 2.1 Rationale 8 2.2 Specific Aims 8 Chapter 3. Material and methods 9 3.1 Material 9 3.2 Methods 11 Chapter 4. Results 14 4.1 The inductions of Lonp1 expression in various treatments for regDC generation 14 4.2 DEX highly induced the expression of Lon 14 4.3 The mRNA expressions or protein expressions of various signaling molecules after dexamethasone treatment 16 4.4 The effects of various inhibitors on the Lonp1 expression in DEX-induced regDCs 18 4.5 Stat3 may participate in the up-regulation of Lonp1 by DEX treatment 19 4.6 Overexpression of Lon may reduce the LPS responses in DC2.4 cells 20 4.7 The level of ROS was not affected by DEX treatment 20 4.8 The expression of COX4-1 increased with the treatment of DEX. 20 4.9 Inhibition of OXPHOS would affect the expression of M2/regDC-associated genes 21 4.10 DEX also induced the expression of Lon in BMDCs from BALB/c mice 23 Chapter 5. Discussion 24 5.1 Highly-expressed M2 markers were observed in DEX-induced regDCs 24 5.2 The expression patterns of IL-10 and Lon are similar, suggesting the same signaling molecules may be involved. 24 5.3 Lon plays a key role in cancer cells under oxidative stress which is associated with the pro-inflammatory phenotype in dendritic cells. 25 5.4 Highly-expressed Lon may modulate the metabolic state through its diverse functions in DEX-induced regDCs 27 5.5 Over-expressing Lon in BMDCs can elucidate the role of Lon in regDCs 28 Chapter 6. Figures Tables 29 Chapter 7. References 53 | |
| dc.language.iso | en | |
| dc.subject | Lon蛋白酶 | zh_TW |
| dc.subject | 地塞米松 | zh_TW |
| dc.subject | 調節型樹突細胞 | zh_TW |
| dc.subject | Regulatory dendritic cells | en |
| dc.subject | Dexamethasone | en |
| dc.subject | Lon protease | en |
| dc.title | 探討Lon蛋白酶在地塞米松誘導調節型樹突細胞之角色 | zh_TW |
| dc.title | Study the Role of Lon Protease in the Dexamethasone-induced Regulatory Dendritic Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李岳倫(Alan Yueh-Luen Lee),陳俊任(Chun-Jen Chen) | |
| dc.subject.keyword | Lon蛋白酶,調節型樹突細胞,地塞米松, | zh_TW |
| dc.subject.keyword | Lon protease,Regulatory dendritic cells,Dexamethasone, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU202001964 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202014260500.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
