請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Hsin-Ju Yang | en |
| dc.contributor.author | 楊欣儒 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:49Z | - |
| dc.date.available | 2021-07-10T21:42:49Z | - |
| dc.date.copyright | 2020-07-31 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-29 | |
| dc.identifier.citation | 1. McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 2018. 217(1): p. 65-77. 2. Perry, D.P., Introduction to Aging, Cancer, and Age‐related Diseases. Annals of the New York Academy of Sciences, 2010. 1197(1): p. vii-x. 3. Jaul, E. and J. Barron, Age-related diseases and clinical and public health implications for the 85 years old and over population. Frontiers in public health, 2017. 5: p. 335. 4. Diekman, B.O. and F. Guilak, Stem cell-based therapies for osteoarthritis: challenges and opportunities. Current opinion in rheumatology, 2013. 25(1): p. 119. 5. Ullah, I., R.B. Subbarao, and G.J. Rho, Human mesenchymal stem cells-current trends and future prospective. Bioscience reports, 2015. 35(2). 6. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-147. 7. Maleki, M., et al., Comparison of mesenchymal stem cell markers in multiple human adult stem cells. International journal of stem cells, 2014. 7(2): p. 118. 8. Spees, J.L., R.H. Lee, and C.A. Gregory, Mechanisms of mesenchymal stem/stromal cell function. Stem cell research therapy, 2016. 7(1): p. 125. 9. Kabat, M., et al., Trends in mesenchymal stem cell clinical trials 2004‐2018: Is efficacy optimal in a narrow dose range? Stem cells translational medicine, 2020. 9(1): p. 17-27. 10. Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell stem cell, 2012. 10(6): p. 678-684. 11. Zhou, S., et al., Age‐related intrinsic changes in human bone‐marrow‐derived mesenchymal stem cells and their differentiation to osteoblasts. Aging cell, 2008. 7(3): p. 335-343. 12. Ganguly, P., et al., Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell transplantation, 2017. 26(9): p. 1520-1529. 13. Cheng, H., et al., Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Molecular biology reports, 2011. 38(8): p. 5161-5168. 14. Childs, B.G., et al., Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, 2015. 21(12): p. 1424. 15. Boulestreau, J., et al., Mesenchymal stem cell derived extracellular vesicles in aging. Frontiers in Cell and Developmental Biology, 2020. 8: p. 107. 16. Gnani, D., et al., An early‐senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro‐inflammatory program. Aging cell, 2019. 18(3): p. e12933. 17. Liu, J., et al., Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies. Frontiers in Cell and Developmental Biology, 2020. 8: p. 258. 18. Okada, M., et al., Abrogation of Age‐Induced MicroRNA‐195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase. Stem cells, 2016. 34(1): p. 148-159. 19. Liu, X., et al., Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myocardial infarction model. The Journal of Heart and Lung Transplantation, 2014. 33(10): p. 1083-1092. 20. Grabowska, W., E. Sikora, and A. Bielak-Zmijewska, Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 2017. 18(4): p. 447-476. 21. Simonsen, J.L., et al., Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature biotechnology, 2002. 20(6): p. 592-596. 22. Gu, Z., et al., p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clinical and Developmental Immunology, 2013. 2013. 23. Song, X., et al., Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Bioscience reports, 2019. 39(6). 24. Yoon, D.S., et al., SIRT1 directly regulates SOX2 to maintain self‐renewal and multipotency in bone marrow‐derived mesenchymal stem cells. Stem Cells, 2014. 32(12): p. 3219-3231. 25. Yoon, D.S., et al., Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation. Biochemical and biophysical research communications, 2015. 467(4): p. 1026-1032. 26. Pirmoradi, S., et al., Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug research, 2018. 68(04): p. 213-221. 27. Zhang, Y., et al., Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 2019. 9(23): p. 6976. 28. Andreeva, N., et al., Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells. Cell Stress and Chaperones, 2016. 21(4): p. 727-733. 29. Zhao, D., et al., Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018. 10(4): p. 462. 30. Frith, J.E., B. Thomson, and P.G. Genever, Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Engineering Part C: Methods, 2010. 16(4): p. 735-749. 31. Tsai, C.-W., et al., Chitosan delaying human fibroblast senescence through downregulation of TGF-β signaling pathway. Artificial cells, nanomedicine, and biotechnology, 2018. 46(8): p. 1852-1863. 32. Chiu, H.-Y., Y.-G. Tsay, and S.-C. Hung, Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Scientific reports, 2017. 7(1): p. 1-14. 33. Tsai, C.-W., et al., Chitosan treatment delays the induction of senescence in human foreskin fibroblast strains. PloS one, 2015. 10(10). 34. Zhu, W., et al., Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy. Cell death disease, 2018. 9(8): p. 1-17. 35. Zhang, J., Autophagy and mitophagy in cellular damage control. Redox biology, 2013. 1(1): p. 19-23. 36. Fafián-Labora, J.A., M. Morente-López, and M.C. Arufe, Effect of aging on behaviour of mesenchymal stem cells. World journal of stem cells, 2019. 11(6): p. 337. 37. Yang, Y.-H.K., et al., Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem cell research therapy, 2018. 9(1): p. 1-14. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76996 | - |
| dc.description.abstract | 人類間質幹細胞是一種可自我新生且具有分化能力的細胞群,其可誘導分化成硬骨、軟骨及脂肪等細胞。再者,該類細胞可自成人體中分離出後再誘導成目標細胞群,所以在細胞治療領域上具有相當的優勢。但能自人體取出的間葉幹細胞數量有限,一般常見使用基因和病毒轉殖技術增進其體外增殖、演緩其分化和老化的性質。在先前研究中我們已發現若將邁入老化前的人類包皮纖維母細胞培養於幾丁聚醣基材上或於含有幾丁聚醣的環境中,皆能有效地使進入老化前的細胞延長複製代數、提升增殖能力和減少老化表徵。因此本研究進一步探討幾丁聚醣是否能調節人類間質幹細胞的增殖與老化相關功能表現。由數據結果發現將幾丁聚醣直接加入培養環境中,可使邁入老化前的細胞提升細胞活性以及增生的能力。進一步使用衰老相關的β-半乳糖苷酶染色法測定細胞的老化程度,可發現幾丁聚醣僅對細胞粒線體活性較低的細胞株有延緩老化及增加細活性的效果。另外,在老化相關蛋白的表現上,使用幾丁聚醣處理的細胞其p53與p21的蛋白質表現量較未處理的組別低,推測其具有延緩老化之效果。最後,以分化實驗驗證間葉幹細胞的分化特性,成骨分化實驗中發現有處理之組別較未處理的組別分化能力較差,而成脂分化能力則是50 µg/mL組別有顯著下降。但整體而言處理過的細胞經長期培養後總可複製代數與無處理組別無顯著差異。 | zh_TW |
| dc.description.abstract | Human bone mesenchymal stem cells (hBMSCs) are capable of self-renewal and differentiation to the osteogenic, chondrogenic, and adipogenic lineages. HBMSCs can be easily isolated from adults’ bone marrow or adipose tissue so they have potential to cell therapy. Our previous research has found that chitosan can enhance proliferation, delay aging and extend the number of replication times on pre-aging human foreskin fibroblasts effectively. Compared with the method of genetic engineering and virus transfection, adding chitosan into culturing medium directly has great potential to expand cells in vitro since it is easy to operate. In this study, we found that adding chitosan into medium can increase the cell viability and proliferation ability of the pre-aging hBMSCs. The expression of senescence-related proteins p53 and p21 of these cells is lower than the untreated group. Moreover, the treated cells had lower osteogenic differentiation ability than the untreated cells, and the adipogenic differentiation ability was significantly reduced in 50 µg/mL chitosan treated cells. However, through the senescence-associated β-galactosidase (SA-β-gal) assay, we found that chitosan only reduced the amount of SA-β-gal positive cells with low mitochondrial activity. There was also no significant difference in the total population doublings among treated and untreated groups after long-term cultivation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:49Z (GMT). No. of bitstreams: 1 U0001-2807202014302200.pdf: 21147631 bytes, checksum: f1a5ae971ad949e6c58c3b91dbdccab9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii Contents iii List of Figures v List of Tables vi Chapter 1: Introduction 1 1.1 In vivo aging 1 1.2 Mesenchymal stem cells 2 1.2.1 Mesenchymal stem cells 2 1.2.2 Mesenchymal stem cell therapy 4 1.2.3 In vitro MSCs senescence 5 1.2.4 Strategies for rejuvenating senescent MSCs 7 1.3 Chitosan 8 1.4 Motivation and aims 9 1.5 Research framework 10 Chapter 2: Materials and methods 11 2.1 Chemicals and Reagents 11 2.1.1 Reagent preparation 13 2.2 Experimental Equipment 16 2.3 Methods 17 2.3.1 Cell culture and long term in vitro culture 17 2.3.2 preparation of chitosan (Preparation of chitosan substrates) 17 2.3.3 Viability assay 18 2.3.4 BrdU assay 18 2.3.5 Senescence-associated β-galactosidase (SA-β-gal) staining 19 2.3.6 Western blotting 19 2.3.7 MSCs adipogenic and osteogenic differentiation 20 2.3.8 Statistical analysis 20 Chapter 3: Results 21 3.1 Long-term culture of hBMSCs and cumulative population doublings curve 21 3.2 Morphology and senescence-associated β-galactosidase expression 22 3.3 The effect of chitosan treatment on pre-aging hBMSCs viability and proliferation 23 3.4 The effect of chitosan on pre-aging hBMSCs senescence 25 3.5 The effect of chitosan on TB-02 PD9.8 senescence-related proteins expression and TGF-β pathway protein expression 26 3.6 The effect of chitosan on TB-02 PD9.8 osteogenic and Adipogenic differentiation ability 27 3.7 Long-term culture of TB-02 PD9.8 treatment with chitosan 27 Chapter 4: Discussion 27 Chapter 5: Conclusion 32 References 50 | |
| dc.language.iso | en | |
| dc.subject | p21 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | p53 | zh_TW |
| dc.subject | p21 | en |
| dc.subject | chitosan | en |
| dc.subject | senescence | en |
| dc.subject | mesenchymal stem cell | en |
| dc.subject | p53 | en |
| dc.title | 幾丁聚醣對老化幹細胞之影響 | zh_TW |
| dc.title | Effects of chitosan on pre-aging hBMSC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 楊台鴻(0000-0001-5338-4747) | |
| dc.contributor.oralexamcommittee | 王至弘(Jyh-Horng Wang),洪智煌(Chih-Huan Hung),李亦宸(Yi-Chen Li) | |
| dc.contributor.oralexamcommittee-orcid | 王至弘(0000-0002-1531-5297) | |
| dc.subject.keyword | 幾丁聚醣,老化,間質幹細胞,p53,p21, | zh_TW |
| dc.subject.keyword | chitosan,senescence,mesenchymal stem cell,p53,p21, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202001965 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202014302200.pdf 未授權公開取用 | 20.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
