Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 進修推廣部
  3. 事業經營碩士在職學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃恆獎(Heng-Chiang Huang)
dc.contributor.authorCHIA YI LINen
dc.contributor.author林珈伊zh_TW
dc.date.accessioned2021-07-10T21:42:47Z-
dc.date.available2021-07-10T21:42:47Z-
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citation王淳中(2020) 。 讓臉書忍不住出手封鎖的 Deepfake 影片,是什麼技術?台灣人工智慧學校。
江義平、林家毅、黃智彙 (2018)。O2O營銷模式採用行為與決策因素探究。國立政治大學論文。
呂月琪(2019)。誰是社群選戰贏家?Facebook, YouTube, Instagram 跨平台分析。國立台灣大學論文。
李昊餘(2019)。以人工智慧透視學術研究商業化對智慧學習影響之研究。亞洲大學論文。
井上明人(2013)。從思考、設計到行銷,都要玩遊戲!:Gamification 遊戲化的時代(連宜萍譯)。台北市:時報文化。(原著出版年:2012)
宋禹璇. (2016). 以科技接受模型探討運動 APP 遊戲化元素對使用者行為的影響: 以 Nike+ Running 為例. 臺中科技大學多媒體設計系碩士班學位論文, (2016 年), 1-85.
何佩珊(2017)。AI改變世界的速度會比想像更快!你應該認識她-Google雲端AI掌門人李飛飛。2017年3月17日。取自https://meet.bnext.com.tw/articles/view/40108
吳啟華, 陸定邦. (2018). 工業 4.0 下的創新設計迷思. 管理評論, 37(3), 35-51.
廖珮君(2019)。掌握 AI 應用 7 大重點,成功踏上數位轉型浪潮。2019年5月21日。取自https://buzzorange.com/techorange/2019/05/21/7-points-of-ai-application/?fbclid=IwAR0uu0WfxwCvtRhN07VIabEzMiCyYe9YdcvWnAflFRNoqGsf9Y6mZ8Eu2Hk
財團法人資訊工業策進會(2016)。年報。
陳昇瑋, 溫怡玲(2019)。人工智慧在台灣:產業轉型的契機與挑戰。台北市:天下雜誌出版。
劉奕酉(2019)。八張圖,一次搞懂人工智慧的現在、未來,及對你工作的影響。2019年6月28日。取自https://futurecity.cw.com.tw/article/743。
梁定澎. (2012). 資訊管理理論, 台北: 前程文化.
詹惠雯. (2019). 智慧客製化服務創新之研究-以 STITCH FIX 為例. 政治大學經營管理碩士學程 (EMBA) 學位論文, 1-50.
MoneyFJ (2019) 。
AI 成電商升級利器,零售更有智慧。2019年7月24日。取自https://technews.tw/2019/07/24/ai-e-commerce/
人工智慧引領數位時代跨入智慧時代。2017年08月25日。資策會MIC。
林秀真(2018)。以科技接受模式探討顧客使用自助服務科技之行為意圖-以內湖運動中心為例。國立臺灣師範大學論文。
林猷清(2019)。電動機車產業在商用市場的經營策略分析—以G公司個案為例。國立台灣大學論文。
張廷暘(2019)全通路整合的顧客體驗分析 :以Amazon、Nike與P公司之為例。國立清華大學論文。
曹 輝(2019)。探討全通路裡的顧客感知價值是如何影響顧客保留。國立清華大學大學。
許有進(2018)。臺灣發展人工智慧之挑戰與機會。國家發展委員會。
郭華琪(2019)。以科技接受模式探討影響消費者購屋意願的關鍵因素:以智慧綠建築為例。國立成功大學論文。
陳良基(2017)。打造人工智慧創新環境機制。國家發展委員會。
陳怡貞(2002)。消費者採用行為與意象感受程度之關聯性研究-以數位相機為例。國立成功大學論文。
曾更瑩(2018)。人工智慧之相關法規國際發展趨勢與因應。國家發展委員會。
游世康(2018)。以科技接受模型探討電子發票於行動載具使用意圖。國立臺北科技大學論文
馮雯稘(2018)。以科技接受模式探討大學實施磨課師應用先修班課程影響完課率之因素。國立清華大學論文。
楊淑貞(2002)。創新特質與網路購物採用之研究。國立交通大學論文。
劉又甄(2019)。全通路內涵、效益與發展策略之個案研究 — AISAS模型與美妝品牌的應用。國立臺灣大學大學。
蔡碩倉、黃文星、林君儒(2007)。網路行銷創新擴散之研究。朝陽科技大學論文。
鄭兆策(2017)。aCommerce:擴增實境於零售業應用觀察。財團法人資訊工業策進會。
謝孟儒(2020)。以科技接受模式探討病患對用藥提醒系統接受度之研究。國立成功大學論文
蘇孟宗,陳右怡(2018)。人工智慧驅策臺灣產業跨域創新。國家發展委員會。
Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser Sheikh(2018). Recycle-gan: Unsupervised video retargeting. In ECCV.
Aiken, M., Hage, J. (1966). Organizational alienation: A comparative analysis. American sociological review, 497-507.
AISmartz (2019).The Past and the Present of Natural Language Generation.AI Smartz.
Anthio Yuen, M.Sc.Pl, Wendy Waters, Ph.D(2015). Omni-channel retailing and the rise of the digital consumer: Evaluating the opportunities and trends for Canadian retail property.Gwl Realty Advisors.
Baller, S., Dutta, S., Lanvin, B. (2016). Global information technology report 2016. Geneva: Ouranos.
Barr, P., Noble, J., Biddle, R. (2007). Video game values: Human–computer interaction and games. Interacting with Computers, 19(2), 180-195.
Berry, L. L., Wall, E. A., Carbone, L. P. (2006). Service clues and customer assessment of the service experience: Lessons from marketing. Academy of Management Perspectives, 20(2), 43-57.
Betz, F. (1987). Managing Technology: competing through new ventures, innovation, and corporate research. Prentice Hall.
Betz, F. (2003). Managing technological innovation: competitive advantage from change. John Wiley Sons.
Boer, H., During, W. E. (2001). Innovation, what innovation? A comparison between product, process and organisational innovation. International Journal of Technology Management, 22(1-3), 83-107.
C. Bregler, M. Covell, and M. Slaney(1997). Video rewrite: Driving visual speech with audio. Proceedings of the ACM Annual Authorized licensed use limited to: National Taiwan University. Downloaded on June 29,2020 at 17:02:11 UTC from IEEE Xplore. Restrictions apply. Conference on Computer Graphics And Interactive Techniques, pages 353–360.
C. Szegedy et al(2016). Rethinking the inception architecture for computer vision. Proeedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818– 2826.
Catanzaro B (2013) Deep learning with COTS HPC systems, In Proc of the 30th International Conference on Machine Learning, pp. 1337–1345
Chilimbi T, Suzue Y, Apacible J, Kalyanaraman K (2014) Project adam: Building an efficient and scalable deep learning training system, In Proc of 11th USENIX Symposium on Operating Systems Design and Implementation, pp. 571–582
Chuck Schaeffer.IDC The Future of Retail—Omni-Channel Retailing.crmsearch.
D. Guera, S. K. Yarlagadda, P. Bestagini, F. Zhu, S. Tubaro, ¨ and E. J. Delp(2018). Reliability map estimation for cnn-based camera model attribution. Proceedings of the IEEE Winter Conference on Applications of Computer Vision.
D. Guera, Y. Wang, L. Bondi, P. Bestagini, S. Tubaro, and ¨ E. J. Delp(2017). A counter-forensic method for CNN-based camera model identification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1840–1847.
D. P. Kingma and J. Ba(2014). Adam: A method for stochastic optimization. arXiv:1412.6980.
Damanpour, F., Gopalakrishnan, S. (1998). Theories of organizational structure and innovation adoption: the role of environmental change. Journal of Engineering and technology management, 15(1), 1-24.
Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen(2018.) Mesonet: a compact facial video forgery detection network. In IEEE International Workshop on Information Forensics and Security (WIFS).
Davenport, T. H. (1993). Process innovation: reengineering work through information technology. Harvard Business Press.
Davide Cozzolino and Luisa Verdoliva(2018). Noiseprint: a cnn-based camera model fingerprint. arXiv preprint arXiv:1808.08396.
Davis, F. D., Bagozzi, R. P., Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Dean J, Corrado G, Monga R, Chen K, Devin M, Le Q, Mao M, Ranzato M, Senior A, Tucker P, Yang K, Ng A (2012) Large scale distributed deep networks, In Proc of Advances in Neural Information Processing Systems, pp. 1223–1231
Den Hertog, P., Bilderbeek, R. (1999). Conceptualising service innovation and service innovation patterns. Research Programme on Innovation in Services (SIID) for the Ministry of Economic Affairs, Dialogic, Utrecht.
Deterding, S.,Dixon, D.,Khaled, R.,Nacke, L.(2011).From game design elements to gamefulness: Defining gamification.Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, September 28-30, 2011,Tampere, Finland:
Euchner, J. (2014). Ten Types of Innovation: The Discipline of Building Breakthroughs. Research Technology Management, 57(5), 60.
Fishbein, M., Jaccard, J., Davidson, A. R., Ajzen, I., Loken, B. (1980). Predicting and understanding family planning behaviors. In Understanding attitudes and predicting social behavior. Prentice Hall.
FIXMIRROR。http://www.fxmirror.net/zh/main。
G. Lample et al(2017). Fader networks: Manipulating images by sliding attributes. Advances in Neural Information Processing Systems, pages 5967–5976.
Gopalakrishnan, S., Bierly, P. (2001). Analyzing innovation adoption using a knowledge-based approach. Journal of Engineering and Technology management, 18(2), 107-130.
Gopalakrishnan, S., Damanpour, F. (2000). The impact of organizational context on innovation adoption in commercial banks. IEEE Transactions on Engineering Management, 47(1), 14-25.
Gopalakrishnan, S., Dugal, M. (1998). Strategic choice versus environmental determinism: A debate revisited. International Journal of Organizational Analysis, 6, 146-164.
Gouillart, F., Billings, D. (2013). Community-powered problem solving. Harvard business review, 91(4), 70-7.
Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks, In ICASSP 2013, pp. 1–5
H. T. Sencar and N. Memon, editors(2013). Digital Image Forensics.
Hammer, M., Champy, J. (1993). A manifesto for business revolution. H. Collins, Reengineering the Coorporation, 144.
Haya R. H, Khaled S (2019). Combating Deepfake Videos Using Blockchain and Smart Contracts. In Proc of IEEE International Joint Conference on Neural Networks, pp. 289–256
Hipp, C., Grupp, H. (2005). Innovation in the service sector: The demand for service-specific innovation measurement concepts and typologies. Research policy, 34(4), 517-535.
Hoyer, W. D., MacInnis, D. J., (1997). Consumer behavior. New York: Houghton Mifflin Company.
J. Donahue et al(2017). Long-term recurrent convolutional networks for visual recognition and description. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4):677–691.
J. Thies et al(2016). Face2Face: Real-time face capture and reenactment of rgb videos. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2387– 2395.
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros(2017). Unpaired imageto-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE International Conference on Computer Vision, pages 2242–2251.
Jason Bunk, Jawadul H Bappy, Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Arjuna Flenner, BS Manjunath, Shivkumar Chandrasekaran, Amit K Roy-Chowdhury, and Lawrence Peterson(2017). Detection and localization of image forgeries using resampling features and deep learning. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on. IEEE.
Juran, J. M. (2003). Juran on leadership for quality. Simon and Schuster.
K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Matusik, and H. Pfister(2011). Video face replacement. ACM Transactions on Graphics, 30(6):1–130.
Kees Jacobs, Ron Tolido, Achim Himmelreich ,and Jerome Buvat(2018) .Building the Retail Superstar : How unleashing AI across functions offers a multi-billion dollar opportunity. Capgemini.
Khan M, Lester D, Plana L, Rast A, Jin X, Painkras E, Furber S (2008) SpiiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor, In Proc of IEEE International Joint Conference on Neural Networks, pp. 2849–2856
Kim MY, Kim YM, Kang SW(2012). A survey and multilevel analysis of nursing unit tenure diversity and medication errors. Journal of Nursing Management; 24: 634-645.
Klapztein, S., Cipolla, C. (2016). From game design to service design: A framework to gamify services. Simulation Gaming, 47(5), 566-598.
Kumar, M. D. (2000). Institutional framework for managing groundwater: A case study of community organisations in Gujarat, India. Water Policy, 2(6), 423-432.
Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld(2008). Learning realistic human actions from movies. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.
Luong M, Le Q, Sutskever I, Vinyals O, Kaiser L (2016) . Multitask sequence to sequence learning, In Proc ICLR, pp. 1–10
M. Brundage et al(2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv:1802.07228.
Marie-Helen M.,Alex A.(2018). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. doi : 10.1177/1365712718807226. PP 73–110
Martin Arjovsky, Soumith Chintala, and Leon Bottou(2017) . ´ Wasserstein gan. arXiv preprint arXiv:1701.07875.
Mei H, Bansal M, Walter M (2016). What to talk about and how? Selective generation using LSTMs with coarse-to-fine alignment,In NAACL-HLT, pp. 1–11
Merolla P, Arthur J, Alvarez-lcaza R, Cassidy A, Sawada J, Akopyan F, Jackson B, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S, Appuswamy R, Taba B, Amir A, Flickner M, Risk W, Manohar R, Modha D (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):668–673.
Michaela Jedinak’s Virtual Fitting Room powered by Fits.me!(2014).Michaela Jedinak
N. McLaughlin, J. M. d. Rincon, and P. Miller(2016). Recurrent convolutional network for video-based person reidentification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1325–1334.
N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen(2017). Distinguishing computer graphics from natural images using convolution neural networks. Proceedings of the IEEE Workshop on Information Forensics and Security, pages 1–6.
Nahuel Dalgaard, Carlos Mosquera, and Fernando Perez- ´ Gonzalez(2010). On the role of differentiation for resampling de- ´ tection. In Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE.
P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros(2017). Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5967–5976.
P. Upchurch et al(2017). Deep feature interpolation for image content changes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6090–6099.
P. Zhou et al(2017). Two-stream neural networks for tampered face detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1831–1839.
Pine, B. J., Gilmore, J. H. (2013). The experience economy: past, present and future. In Handbook on the experience economy. Edward Elgar Publishing.
Pink, D. (2009). The puzzle of motivation. TEDGlobal 2009.
R. Raghavendra, K. B. Raja, S. Venkatesh, and C. Busch(2017). Transferable deep-cnn features for detecting digital and print-scanned morphed face images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1822–1830.
Raina R, Madhavan A, Ng A (2009) Large-scale deep unsupervised learning using graphics processors, In Proc of 26th Annual International Conference on Machine Learning, pp. 873–880
Robbins, S. P., Judge, T. A. (2006). Perilaku organisasi. Edisi kesepuluh. Jakarta: PT Indeks Kelompok Gramedia.
Robertson, T. S. (1967). The process of innovation and the diffusion of innovation. Journal of marketing, 31(1), 14-19.
Rodrigues, J. N., Dias, A. M., Providência, P. (2013). Timber-concrete composite bridges: State-of-the-art review. BioResources, 8(4), 6630-6649.
Rogers, D. W. O. (2006). Fifty years of Monte Carlo simulations for medical physics. Physics in Medicine Biology, 51(13), R287.
Rogers, E. M. (1962). Diffusion of innovations. Glencoe. Free Press.(1976),' New Product Adoption and Diffusion,' Journal of Consumer Research, 2, 290-304.
Rogers, E. M. (2003). Diffusion of Innovations. Fifth edition. Free Press: New York.
Rogers, E. M. (2004). A prospective and retrospective look at the diffusion model. Journal of health communication, 9(S1), 13-19.
Rossler et al(2018). Faceforensics: A large-scale video dataset ¨ for forgery detection in human faces. arXiv:1803.09179.
S. Hochreiter and J. Schmidhuber(1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
S. Lorant(1969). Lincoln; a picture story of his life.
Schramm-Klein, H.; Swoboda, B.; Morscheet, D. (2007). Internet vs. brick-and-mortar stores-analyzing the influence of shopping motives on retail channel choice among internet users. Journal of Customer Behaviour, 6(1), 19-36.
Schroeder, H., Zaharia, S. (2008). Linking multi-channel customer behavior with shopping motives: An empirical investigation of a German retailer
Sumit Saha(2018). A Comprehensive Guide to Convolutional Neural Networks - the ELI5 way.
T. Karras, T. Aila, S. Laine, and J. Lehtinen(2017). Progressive growing of gans for improved quality, stability, and variation. arXiv:1710.10196.
Tewari et al(2017). Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 1274–1283.
Tidd, J. (2001). Innovation management in context: environment, organization and performance. International journal of management reviews, 3(3), 169-183.
V. Conotter, E. Bodnari, G. Boato, and H. Farid(2014). Physiologically-based detection of computer generated faces in video. Proceedings of the IEEE International Conference on Image Processing, pages 248–252.
Van der Aa, W., Elfring, T. (2002). Realizing innovation in services. Scandinavian Journal of Management, 18(2), 155-171.
Verhoef, P. C., Neslin, S. A. Vroomen, B., (2007).Multichannel customer management: Understanding the research-shopper phenomenon. International Journal of Research in Marketing, 24(2), 129-148
Virtual Fitting Room Market by Component (Hardware (Prefabricated Customized), Software and Services), End-User (Physical Store Virtual Store), Use Cases (Apparel, Eye Wear, Jewelry Watches, Beauty Cosmetics), Region - Global Forecast to 2024。https://www.marketsandmarkets.com/Market-Reports/virtual-fitting-room-market-132071646.html(2018)
Vismile。https://www.vismile.com.tw/zh/AI-virtual-fitting.html。
W. Wang and H. Farid(2007). Exposing digital forgeries in interlaced and deinterlaced video. IEEE Transactions on Information Forensics and Security, 2(3).
Y. Liao, Y. Wang, and Y. Liu(2017). Graph regularized autoencoders for image representation. IEEE Transactions on Image Processing, 26(6):2839–2852.
Y. Qian et al(2017). Recurrent color constancy. Proceedings of the IEEE International Conference on Computer Vision, pages 5459–5467.
Yu, U.J., Niehm, L. S., Russell, D. W. (2011). Exploring Perceived Channel Price, Quality, and Value as Antecedents of Channel Choice and Usage in Multichannel Shopping
Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo(2018). Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In CVPR.
Виктор Булавин. Оживляет Мона Лизу или любую другую картинку Samsung AI.Robroy.Ru. Retrieved June 21, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76995-
dc.description.abstract科技日新月異下,許多商業模式也跟著轉變,尤其AI的出現改變了整個IT產業外,也改變了整個世界。在這個快速變遷的世代,迫使許多企業開始思考如何使用這些新科技來適應這個變遷。AI觸發軟體開發流程的改變,讓許多商機應運而生,而其中對於服務產業來說AI所帶來的一大商機「資料提供與處理」透過大量標籤資料來支援AI做學習及決策能提供消費者突破沒有資料的瓶頸,而這其中也影響了許多產業順著這個趨勢做出演變,例如對於服務流程的影響。
例如過去服飾產業雖然也衍生出線上採買的流程,然而最大的矛盾點還是在於消費者無法想像無法接觸到的產品穿在自身上的模樣,而AI的Deepfake技術利用了卷積神經網絡(CNN或ConvNet)—一種深度學習神經網絡來能彌補這一個缺口。透過Deepfake能夠實現所謂的“少量學習”功能,即能夠在僅合成少量圖像的情況下進行“學習”並進行自我訓練,然後再合成全新的圖像,人工生成的圖像。實際上,該系統還具有“一次性學習”的能力,儘管僅添加一個圖像,但它可以從一個原始圖像中生成合理的結果,添加更多圖像可以提高最終表示的準確性。因此本研究將從AI的Deepfake角度來探討虛擬試衣間對於消費者以及產業之影響。
zh_TW
dc.description.abstractWith the rapid development of science and technology, many business models have also changed. In particular, the emergence of AI has changed the entire IT industry as well as the entire world. In this rapidly changing era, many companies are forced to start thinking about how to use these new technologies to adapt to this change. AI triggers changes in the software development process, giving rise to many business opportunities. Among them, for the service industry, AI brings a major business opportunity 'data provision and processing' through a large amount of label data to support AI learning and decision-making can provide consumption They break through the bottleneck of no data, and this has also affected many industries to follow this trend to evolve, such as the impact on service processes.
For example, although the clothing industry in the past has also derived the online purchasing process, the biggest contradiction is that consumers cannot imagine the appearance of untouchable products on themselves. AI's Deepfake technology uses convolutional neural networks (CNN or ConvNet)-a deep learning neural network to make up for this gap. Through Deepfake, the so-called 'small amount of learning' function can be realized, that is, the ability to 'learn' and conduct self-training while only synthesizing a small amount of images, and then synthesize brand new images, artificially generated images. In fact, the system also has the ability of 'one-time learning'. Although only one image is added, it can generate reasonable results from an original image. Adding more images can improve the accuracy of the final representation. Therefore, this study will explore the impact of virtual fitting rooms on consumers and the industry from the perspective of AI's deepfake.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:42:47Z (GMT). No. of bitstreams: 1
U0001-2807202017430500.pdf: 4326547 bytes, checksum: 0ed895291a184b37e6a2feb48d150288 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 7
第三節 研究方法與流程 7
第二章 文獻探討 9
第一節 創新與服務創新 9
第二節 科技接受模型 (Technology Acceptance Model) 13
第三節 創新擴散理論 (Innovation Diffusion Theory) 14
第四節 遊戲化概念與服務流程遊戲化 17
第五節 全通路(Omnichannel retailing) 22
第三章 產業介紹 25
第一節 AI人工智慧定義 25
第二節 AI人工智慧的應用範疇 32
第三節 AI人工智慧商業化 35
第四節 AI人工智慧對於O2O零售產業的影響 38
第五節 AI人工智慧與消費者體驗 39
第四章 個案研究 42
第一節 網路虛擬試衣間 42
第二節 AI人工智慧Deepfake介紹 52
第三節Deepfake在虛擬試衣間的應用分析 61
第五章 結論與研究建議 71
第一節 研究結論與管理意涵 71
第二節 研究限制與未來研究建議 72
參考文獻 75
dc.language.isozh-TW
dc.subject科技接受模型zh_TW
dc.subject深偽zh_TW
dc.subject人工智慧zh_TW
dc.subject虛擬試衣間zh_TW
dc.subject服務流程遊戲化zh_TW
dc.subject遊戲化zh_TW
dc.subject服務創新zh_TW
dc.subject創新擴散理論zh_TW
dc.subjectVirtual Try-onen
dc.subjectIDT(Innovation Diffusion Theory)en
dc.subjectTAM(Technology Acceptance Model)en
dc.subjectDeepfakeen
dc.subjectAI (Artificial Intelligence)en
dc.subjectGamificationen
dc.title消費者於線上購買服飾時採用虛擬試衣技術之探討:以人工智慧Deepfake技術應用為例zh_TW
dc.titleAnalyzing Consumers’Adoption of Virtual Try-on Technology for Online Apparel Shopping: Application of AI Deepfake Technology as an Exampleen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王仕茹(Shih-Ju Wang),周恩頤(En-Yi Chou)
dc.subject.keyword虛擬試衣間,人工智慧,深偽,科技接受模型,創新擴散理論,服務創新,遊戲化,服務流程遊戲化,zh_TW
dc.subject.keywordVirtual Try-on,AI (Artificial Intelligence),Deepfake,TAM(Technology Acceptance Model),IDT(Innovation Diffusion Theory),Gamification,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202001987
dc.rights.note未授權
dc.date.accepted2020-07-29
dc.contributor.author-college進修推廣學院zh_TW
dc.contributor.author-dept事業經營碩士在職學位學程zh_TW
顯示於系所單位:事業經營碩士在職學位學程

文件中的檔案:
檔案 大小格式 
U0001-2807202017430500.pdf
  未授權公開取用
4.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved