請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌(Shih-Huang Tung) | |
| dc.contributor.author | Li-Ting Wang | en |
| dc.contributor.author | 王俐婷 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:21Z | - |
| dc.date.available | 2021-07-10T21:42:21Z | - |
| dc.date.copyright | 2020-08-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 1. Nakama, Y., Chapter 15 - Surfactants. In Cosmetic Science and Technology, Sakamoto, K.; Lochhead, R. Y.; Maibach, H. I.; Yamashita, Y., Eds. Elsevier: Amsterdam, 2017; pp 231-244. 2. Rapp, B. E., Chapter 20 - Surface Tension. In Microfluidics: Modelling, Mechanics and Mathematics, Rapp, B. E., Ed. Elsevier: Oxford, 2017; pp 421-444. 3. O'Lenick, A. J., Silicones—Basic Chemistry and Selected Applications. Journal of Surfactants and Detergents 2000, 3 (2), 229-236. 4. Takamura, K.; James, A., 13 - Paving with Asphalt Emulsions. In Advances in Asphalt Materials, Huang, S.-C.; Di Benedetto, H., Eds. Woodhead Publishing: Oxford, 2015; pp 393-426. 5. Becher, P., A Review of:“Industrial Applications of Surfactants (Special Publication No. 59)”. D. R. Karsa, ed. The Royal Society of Chemistry, London, 1987. vi + 352 pp. Journal of Dispersion Science and Technology 1989, 10 (6), 795-796. 6. Liu, H.-J.; Chen, K.-M.; Lin, L.-H., Polyethylene Glycol/Polydimethylsiloxane Polyester Products as Leveling Agents in Nylon Dyeing. Textile research journal : publication of Textile Research Institute, Inc. and the Textile Foundation 2003, 73 (7), 583-587. 7. López-Montilla, J. C.; James, M. A.; Crisalle, O. D.; Shah, D. O., Surfactants and Protocols to Induce Spontaneous Emulsification and Enhance Detergency. Journal of Surfactants and Detergents 2005, 8 (1), 45-53. 8. Ahmed, M. H. M., Preparation and Evaluation of Sulphonamide Nonionic Surfactants. Grasas y Aceites 2010, 61 (1), 7-15. 9. Negm, N.; Ahmed, S.; Abd-Elaal, A. A.; Ashraf, T., Synthesis and Surface Activity of Nonionic Surfactants Derived from Gallic Acid. Arabian Journal for Science and Engineering 2014, 41, 1-7. 10. Wang, Y.; He, Z.; Liu, Q.; Huang, H., Synthesis and Characterization of Polymerizable Epoxy Resin Surfactants. Journal of Applied Polymer Science 2015, 132 (39). 11. Raduan, N. H.; Horozov, T. S.; Georgiou, T. K., “Comb-Like” Non-Ionic Polymeric Macrosurfactants. Soft Matter 2010, 6 (10), 2321-2329. 12. El Monem Eissa, A.; El Hefnawy, M.; Allah, M. D., Synthesis and Evaluation of Nonionic Polymeric Surfactants Based on Acrylated Polyethylene Glycol. Journal of Surfactants and Detergents 2013, 16 (2), 161-171. 13. Tesoro, G., Epoxy Resins-Chemistry and Technology, 2nd Edition, Clayton A. May, Ed., Marcel Dekker, New York, 1988, 1,288 pp. Journal of Polymer Science Part C: Polymer Letters 1988, 26 (12), 539-539. 14. Jin, F.-L.; Li, X.; Park, S.-J., Synthesis and Application of Epoxy Resins: A Review. Journal of Industrial and Engineering Chemistry 2015, 29, 1-11. 15. Jin, F.-L.; Park, S.-J., Thermal Properties and Toughness Performance of Hyperbranched-Polyimide-Modified Epoxy Resins. Journal of Polymer Science Part B: Polymer Physics 2006, 44 (23), 3348-3356. 16. Brostow, W.; Cassidy, P. E.; Hagg, H. E.; Jaklewicz, M.; Montemartini, P. E. J. P., Fluoropolymer Addition to an Epoxy: Phase Inversion and Tribological Properties. 2001, 42 (19), 7971-7977. 17. Sulzbach, H.; Huver, T.; Thomas, H.-J.; Foglianisi, V., Self-Dispersing, Hardenable Epoxy Resins, Processes for Producing the Same and Methods of Using the Same. Google Patents: 2002. 18. Hernandez, E. D.; Bassett, A. W.; Sadler, J. M.; La Scala, J. J.; Stanzione III, J. F., Synthesis and Characterization of Bio-Based Epoxy Resins Derived from Vanillyl Alcohol. ACS Sustainable Chemistry Engineering 2016, 4 (8), 4328-4339. 19. Zhang, X.; He, Q.; Gu, H.; Colorado, H. A.; Wei, S.; Guo, Z., Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines. ACS applied materials interfaces 2013, 5 (3), 898-910. 20. Hodgkin, J. H.; Simon, G. P.; Varley, R. J., Thermoplastic Toughening of Epoxy Resins: A Critical Review. Polymers for Advanced Technologies 1998, 9 (1), 3-10. 21. Liu, W.; Wang, Z., Silicon-Containing Cycloaliphatic Epoxy Resins with Systematically Varied Functionalities: Synthesis and Structure/Property Relationships. Macromolecular Chemistry and Physics 2011, 212 (9), 926-936. 22. John, N. A. S.; George, G. A., Diglycidyl Amine — Epoxy Resin Networks: Kinetics and Mechanisms of Cure. Progress in Polymer Science 1994, 19 (5), 755-795. 23. Wu, C.-H.; Huang, Y.-C.; Lai, T.-H.; Chiu, S.-H.; Uchibe, N.; Lin, H.-W.; Chiu, W.-Y.; Tung, S.-H.; Jeng, R.-J., Facile Synthesis Toward Self-Dispersible Waterborne Comb-like Poly(hydroxyaminoethers). Polymer 2020, 196, 122464. 24. Ehlers, J.-E.; Rondan, N. G.; Huynh, L. K.; Pham, H.; Marks, M.; Truong, T. N., Theoretical Study on Mechanisms of the Epoxy−Amine Curing Reaction. Macromolecules 2007, 40 (12), 4370-4377. 25. Sbirrazzuoli, N.; Mititelu-Mija, A.; Vincent, L.; Alzina, C., Isoconversional Kinetic Analysis of Stoichiometric and Off-Stoichiometric Epoxy-Amine Cures. Thermochimica Acta 2006, 447 (2), 167-177. 26. Mijovic, J.; Fishbain, A.; Wijaya, J., Mechanistic Modeling of Epoxy-Amine Kinetics. 1. Model Compound Study. Macromolecules 1992, 25 (2), 979-985. 27. Mijovic, J.; Andjelic, S., A Study of Reaction Kinetics by Near-Infrared Spectroscopy. 1. Comprehensive Analysis of a Model Epoxy/Amine System. Macromolecules 1995, 28 (8), 2787-2796. 28. Sheng, J.; Zeng, P.; Shan, Y., Study on the Synthesis and Properties of Waterborne Epoxy Resin and Curing Agent. Advanced Materials Research 2013, 815, 547-551. 29. Arora, K. S.; Devore, D. I.; Grinstein, R. H.; Johnson, G. S.; Papalos, J. G.; Shah, S., Aqueous Self-Dispersible Epoxy Resin Based on Epoxy-Amine Adducts Containing Aromatic Polyepoxide. Google Patents: 1997. 30. Procopio, L. J.; Larson, G. R.; Rosano, W. J., Low-VOC Waterborne Coatings for Use in Industrial Maintenance Painting. CoatingsTech 2007, 4 (2), 50-59. 31. Pradhan, S.; Mohanty, S.; Nayak, S. K., Waterborne Epoxy Adhesive Derived from Epoxidized Soybean Oil and Dextrin: Synthesis and Characterization. International Journal of Polymer Analysis and Characterization 2017, 22 (4), 318-329. 32. Yang, M.; Wu, J.; Fang, D.; Li, B.; Yang, Y., Corrosion Protection of Waterborne Epoxy Coatings Containing Mussel-Inspired Adhesive Polymers Based on Polyaspartamide Derivatives on Carbon Steel. Journal of Materials Science and Technology 2018, 34 (12), 2464-2471. 33. Qin, Y.; Xu, G.; Wang, Y.; Hu, J., Preparation of Phosphorus-Containing Epoxy Emulsion and Flame Retardancy of its Thermoset. High Performance Polymers 2014, 26 (5), 526-531. 34. Chen T, S. X. Z., Gu G F. , Two Component Waterborne Epoxy Resin Coating [J]. Polym. Bull. 2002, 6, 63-70. 35. Zhaoying, Z.; Yuhui, H.; Bing, L.; Guangming, C., Studies on Particle Size of Waterborne Emulsions Derived from Epoxy Resin. European Polymer Journal 2001, 37 (6), 1207-1211. 36. Klein, D. H., Water-Emulsifiable Epoxy Resin Composition. Google Patents: 1994. 37. Chu, S. C.; Spencer, A. T., Aqueous Coating Comprising Dispersible Epoxy Resin-Acid Polymer Ester and Diluent polymer, and Method of Preparation. Google Patents: 1984. 38. Hao, R. Z.; Yun, F. Y.; Xiao, J. L., Preparation of Waterborne Epoxy Resin Emulsion. Applied Mechanics and Materials 2013, 364, 627-630. 39. Hao, Y.; Wan, Y.; Zhou, J.; Dewen, S.; Li, B.; Qianping, R., Self-Emulsified Waterborne Epoxy Hardener without Acid Neutralizers and its Emulsifying and Curing Properties. Pigment Resin Technology 2018, 48. 40. Galindo-Alvarez, J.; Sadtler, V.; Choplin, L.; Salager, J.-L., Viscous Oil Emulsification by Catastrophic Phase Inversion: Influence of Oil Viscosity and Process Conditions. Industrial Engineering Chemistry Research 2011, 50 (9), 5575-5583. 41. Kumar, A.; Li, S.; Cheng, C.-M.; Lee, D., Recent Developments in Phase Inversion Emulsification. Industrial Engineering Chemistry Research 2015, 54 (34), 8375-8396. 42. Bourrel, M.; Salager, J. L.; Schechter, R. S.; Wade, W. H., A Correlation for Phase Behavior of Nonionic Surfactants. Journal of Colloid and Interface Science 1980, 75 (2), 451-461. 43. Saito, H.; Shinoda, K., The Stability of W/O Type Emulsions as A Function of Temperature and of the Hydrophilic Chain Length of the Emulsifier. Journal of Colloid and Interface Science 1970, 32 (4), 647-651. 44. Yang, Z. Z.; Xu, Y. Z.; Zhao, D. L.; Xu, M., Preparation of Waterborne Dispersions of Epoxy Resin by the Phase-Inversion Emulsification Technique. 1. Experimental Study on the Phase-Inversion Process. Colloid and Polymer Science 2000, 278 (12), 1164-1171. 45. Yang, Z.; Xu, Y.; Zhao, D.; Xu, M., Preparation of Waterborne Dispersions of Epoxy Resin by the Phase-Inversion Emulsification Technique. 2. Theoretical Consideration of the Phase-Inversion Process. Colloid and Polymer Science 2000, 278 (11), 1103-1108. 46. Salager, J.-L., Emulsion Phase Inversion Phenomena. 2005; pp 185-226. 47. Zambrano, N.; Tyrode, E.; Mira, I.; Márquez, L.; Rodríguez, M.-P.; Salager, J.-L., Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 1. Effect of the Water-to-Oil Ratio Rate of Change on the Dynamic Inversion Frontier. Industrial Engineering Chemistry Research 2003, 42 (1), 50-56. 48. Tyrode, E.; Allouche, J.; Choplin, L.; Salager, J.-L., Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 4. Following the Emulsion Viscosity during Three Inversion Protocols and Extending the Critical Dispersed-Phase Concept. Industrial Engineering Chemistry Research 2005, 44 (1), 67-74. 49. Aravand, M. A.; Semsarzadeh, M. A. In Particle Formation by Emulsion Inversion Method: Effect of the Stirring Speed on Inversion and Formation of Spherical Particles, Macromolecular symposia, Wiley Online Library: 2008; pp 141-147. 50. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊 2004, 26 (2), 416-424. 51. Kot, M. In-operando hard X-ray Photoelectron Spectroscopy Study on the Resistive Switching Physics of HfO2-Based RRAM. 2014. 52. Ici Americas, i., The HLB System : A Time-Saving Guide to Emulsifier Selection. ICI Americas, Inc.: Wilmington, 1984. 53. Ai, D.; Mo, R.; Wang, H.; Lai, Y.; Jiang, X.; Zhang, X., Preparation of Waterborne Epoxy Dispersion and its Application in 2K Waterborne Epoxy Coatings. Progress in Organic Coatings 2019, 136, 105258. 54. Feng, H.; Verstappen, N.; Kuehne, A.; Sprakel, J., Well-Defined Temperature-Sensitive Surfactants for Controlled Emulsion Coalescence. Polym. Chem. 2013, 4, 1842-1847. 55. Liu, C.-H.; Tseng, W.-H.; Cheng, C.-Y.; Wu, C.-I.; Chou, P.-T.; Tung, S.-H., Effects of Amorphous Poly(3-hexylthiophene) on Active-Layer Structure and Solar Cells Performance. Journal of Polymer Science Part B: Polymer Physics 2016, 54 (10), 975-985. 56. Chang, Y.-Y. Relationship Between Phase-Seperated Structures and the Efficiency and Stability of Polymer Solar Cells. NTU, College of Engineering, 2016. 57. Wilfert, S.; Iturmendi, A.; Henke, H.; Brueggemann, O.; Teasdale, I., Thermoresponsive Polyphosphazene-Based Molecular Brushes by Living Cationic Polymerization. Macromolecular symposia 2014, 337 1, 116-123. 58. Theppaleak, T.; Tumcharern, G.; Wichai, U.; Rutnakornpituk, M., Synthesis of Water Dispersible Magnetite Nanoparticles in the Presence of Hydrophilic Polymers. Polymer Bulletin 2009, 63, 79-90. 59. Belbekhouche, S.; Ali, G.; Dulong, V.; Picton, L.; Le Cerf, D., Synthesis and Characterization of Thermosensitive and pH-Sensitive Block Copolymers Based on Polyetheramine and Pullulan with Different Length. Carbohydrate Polymers 2011, 86, 304-312. 60. Marques, N. d. N.; Balaban, R. d. C.; Halila, S.; Borsali, R., Synthesis and Characterization of Carboxymethylcellulose Grafted with Thermoresponsive Side Chains of High LCST: The high Temperature and High Salinity Self-Assembly Dependence. Carbohydrate Polymers 2018, 184, 108-117. 61. Maity, P.; Kasisomayajula, S.; Parameswaran, V.; Basu, S.; Gupta, N., Improvement in Surface Degradation Properties of Polymer Composites due to Pre-Processed Nanometric Alumina Fillers. Dielectrics and Electrical Insulation, IEEE Transactions on 2008, 15, 63-72. 62. Huang, J.; Nie, X., A simple and Novel Method to Design Flexible and Transparent Epoxy Resin with Tunable Mechanical Properties. Polymer International 2016, 65. 63. Zhang, Q.; Weber, C.; Schubert, U. S.; Hoogenboom, R., Thermoresponsive Polymers with Lower Critical Solution Temperature: from Fundamental Aspects and Measuring Techniques to Recommended Turbidimetry Conditions. Materials Horizons 2017, 4 (2), 109-116. 64. Küchler, S.; Detloff, T.; Sobisch, T.; Lerche, D., Direct and Accelerated Characterization of Ceramic Dispersions. Ceramic Forum International 2011, cfi/Ber. DKG 88 (2011), E27-E31. 65. Lerche, D., Dispersion Stability and Particle Characterization by Sedimentation Kinetics in a Centrifugal Field. Journal of Dispersion Science and Technology 2002, 23 (5), 699-709. 66. Yow, H. N.; Biggs, S., Probing the Stability of Sterically Stabilized Polystyrene Particles by Centrifugal Sedimentation. Soft Matter 2013, 9 (42), 10031-10041. 67. Lerche, D., Comprehensive Characterization of Nano- and Microparticles by In-Situ Visualization of Particle Movement Using Advanced Sedimentation Techniques. KONA Powder and Particle Journal 2019, 36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76981 | - |
| dc.description.abstract | 本研究藉由利用一級胺以及二級胺上之活性氫對環氧基良好的反應性,設計將雙酚A型的環氧樹脂鏈段導入聚醚胺 (Jeffamine),成功地以一種簡便的方式合成具有親水與親油性基團的水性環氧樹脂型乳化劑,並以相翻轉的方法將環氧樹脂型乳化劑成功乳化分子量為6100 g/mol和12000 g/mol的環氧樹脂,並探討不同鏈長的環氧樹脂型乳化劑在乳化性能以及乳液熱性質及穩定性上的影響。 在乳化劑的製備實驗中發現低分子量的環氧樹脂(MW=1000,1250,1520,1630 g/mol)可與聚醚胺(M2070)反應形成有效的乳化劑,並且環氧樹脂與聚醚胺的摩爾比為1:2具有最佳的乳化效果。將合成的水性環氧樹脂乳化劑水性化環氧樹脂後可得到粒徑為500-1000 nm 的乳液,並觀察到當乳化劑結構中的環氧樹脂分子量越小,其乳化得到的乳液會有越小的粒徑值,乳液安定性越高;從差式掃描量熱儀 (DSC)的測量結果中顯示,水性環氧樹脂乳液成膜後的玻璃轉移溫度(Tg)介於62-72 °C,並且其Tg值隨著乳化劑中環氧樹脂分子量的上升而提升,其中環氧樹脂分子量為1630 g/mol的乳化劑可得到最高的Tg值為71.5℃,具有最佳的熱穩定性。由實驗結果可得到,乳化劑中環氧樹脂分子量的大小對乳液的粒徑值與成膜後的Tg值有相反的影響。此外,將水性化的環氧樹脂乳液塗覆於金屬表面,其黏著力可達16.7 N/mm以及在5小時鹽霧測試中金屬表面腐蝕程度皆在40%以下,具有優秀的黏著力與抗腐蝕性表現。本實驗將乳化劑進行分子結構設計並以相翻轉法成功水性化擴鏈後的環氧樹脂,再分別對乳化劑、高分子量的環氧樹脂以及水性環氧樹脂乳液作化學結構鑑定、熱性質檢測、乳液粒徑值分析以及穩定性測試等分析,期望可應用於非離子型水性環氧樹脂乳液之開發。 | zh_TW |
| dc.description.abstract | In this study, a new class of epoxy-Jeffamine emulsifiers for preparing waterborne epoxy resins were successfully synthesized. Bisphenol A-based epoxy resins were covalently linked with hydrophilic Jeffamines to form the nonionic surfactants with hydrophilic and hydrophobic moieties through the ring opening reaction of the epoxide groups with the amine groups. The surfactants of the molar ratio of epoxy/Jeffamines (M2070) = 0.5 and the epoxies with low molecular weight (MW = 1000, 1250, 1520, 1630 g/mol) are effective for emulsifying the epoxy resins with the molecular weight of 6100 g/mol in water through the phase inversion method. We have also synthesized the epoxy resins with higher molecular weights by using ethanolamine to extend the epoxy chains. The epoxy resin with MW = 12000 g/mol can also be successfully emulsified in water by the new synthesized surfactants. The dynamic light scattering (DLS) measurements show that the particle sizes of the emulsions are in the range between 500 and 1000 nm, and the particles size decreases with decreasing the molecular weight of the epoxy in the surfactants. The differential scanning calorimetry (DSC) measurements reveal that the glass transition temperatures (Tg) of the solidified epoxies cast from the emulsions is in the range between 62 and 72 °C, and the Tg is increased with increasing the molecular weight of the epoxy in the surfactants. Due to the good stability of the emulsions and the good thermal properties of the epoxies, after coating the emulsions on the metal surfaces, the films are smooth and exhibit excellent corrosion resistance and high adhesive force (16.7 N/mm). The newly developed emulsifiers are highly potential in preparing waterborne epoxy emulsions that aiming to the applications of adhesives that require strong adhesion as well as high stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:21Z (GMT). No. of bitstreams: 1 U0001-2907202018031000.pdf: 6514789 bytes, checksum: 081427cd270cc9c8e977b2e67a8990af (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xii 壹、緒論 1 貳、文獻回顧 3 2.1 乳化劑介紹 3 2.1.1 非離子型乳化劑介紹及應用 4 2.1.2 非離子型乳化劑的合成 6 2.2 環氧樹脂介紹 9 2.2.1 雙酚A型環氧樹脂的合成反應23-27 12 2.2.2 雙酚A型環氧樹脂基本性能 13 2.2.3 環氧樹脂與活性氫反應 14 2.3 水性環氧樹脂介紹 15 2.3.1 自乳化法 16 2.3.2 相翻轉法 18 參、實驗內容 24 3.1 實驗藥品與溶劑 24 3.2 實驗儀器 26 3.3 實驗流程圖與分子命名 30 3.4 非離子型乳化劑之之合成步驟 31 3.5 高分子量環氧樹脂之合成步驟 33 3.6 以非離子型乳化劑乳化環氧樹脂之步驟 35 3.7 非離子型乳化劑之之HLB值與LCST溫度之測量 36 3.8 非離子型乳化劑之穿透式小角X光散射(SAXS)測量 36 肆、結果與討論 38 4.1 非離子型乳化劑性質分析 38 4.1.1 初步乳化性能分析與乳化劑的選擇 38 4.1.2 核磁共振光譜分析(1H-NMR分析) 39 4.1.3 傅立葉轉換紅外線光譜(FTIR)分析 41 4.1.4 凝膠滲透層析(GPC)分析 42 4.1.5 HLB 值分析 44 4.1.6 最低臨界溶解溫度(LCST)分析 46 4.1.7 熱重損失分析 (Thermogravimetric analysis, TGA) 46 4.1.8 差式掃描量熱儀 (Differential scanning calorimetry, DSC) 47 4.1.9 乳化劑的粒徑大小、分布與界面電位分析 48 4.1.10 穿透式小角X光散射(SAXS)分析乳化劑結構 49 4.2 高分子量環氧樹脂性質分析 52 4.2.1 核磁共振光譜分析(1H-NMR分析) 52 4.2.2 凝膠滲透層析(GPC)分析 56 4.2.3 熱重損失分析 (Thermogravimetric analysis, TGA) 57 4.2.4 差式掃描量熱儀 (Differential scanning calorimetry, DSC) 57 4.3 水性環氧樹脂乳液性質分析 58 4.3.1 乳液的粒徑、界面電位與酸鹼值分析 59 4.3.2 場發射掃描式(SEM)電子顯微鏡分析 64 4.3.3 熱重損失分析 (Thermogravimetric analysis, TGA) 66 4.3.4 差式掃描量熱儀 (Differential scanning calorimetry, DSC) 68 4.3.5 乳液的流變行為分析 70 4.3.6 乳液穩定性分析 73 4.3.7 乳液的耐蝕性與黏著力測試 80 伍、結論 81 陸、參考文獻 83 附錄 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 非離子型乳化劑 | zh_TW |
| dc.subject | 玻璃轉移溫度 | zh_TW |
| dc.subject | 水性環氧樹脂 | zh_TW |
| dc.subject | 抗腐蝕性 | zh_TW |
| dc.subject | waterborne epoxy resins | en |
| dc.subject | nonionic surfactants | en |
| dc.subject | corrosion resistance | en |
| dc.subject | glass transition temperature | en |
| dc.subject | stability | en |
| dc.title | 水性環氧樹脂乳化劑之設計、合成與應用 | zh_TW |
| dc.title | Design, Synthesis, and Applications of Emulsifiers for Waterborne Epoxy Resins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭如忠(Ru-Jong Jeng),邱文英(Wen-Yen Chiu),林新惟(Hsin-Wei Lin),吳建欣(Chien-Hsin Wu) | |
| dc.subject.keyword | 非離子型乳化劑,玻璃轉移溫度,水性環氧樹脂,抗腐蝕性,穩定性, | zh_TW |
| dc.subject.keyword | nonionic surfactants,stability,glass transition temperature,waterborne epoxy resins,corrosion resistance, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202002050 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202018031000.pdf 未授權公開取用 | 6.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
