請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃(Jia-Kun Chen) | |
| dc.contributor.author | Chia-Ti Tseng | en |
| dc.contributor.author | 曾家緹 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:17Z | - |
| dc.date.available | 2021-07-10T21:42:17Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-31 | |
| dc.identifier.citation | 1.Council of Agriculture. (2017). COA Annual Report. Retrieved from https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx 2.Eurogroup for Animals. (2016). Eurogroup's Annual Report . Retrieved from https://issuu.com/eurogroupforanimals/docs/high_res__ar2016__efa_ 3.Bousfield, B., Brown, R. (2011). One World One Health. Veterinary Bulletin Agriculture, 1(7). 4.Bessei, W. (2006). Welfare of broilers: A review. World’s Poultry Science Journal, 62, 455-466. 5.Council of Agriculture. (2013). COA Annual Report. Retrieved from https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx 6.李盼、譚中岳 (2019)。全球蛋雞產業政策、市場及科技發展趨勢。農業生技產業季刊,57,6-8。 7.Donkoh, A. (1989). Ambient temperature: a factor affecting performance and physiological response of broiler chicken. Int. J. Biometeorol, 33, 259-265. 8.Razuki, W. M., Mukhlis, S. A., F.H., J., R.F., H. (2011). Productive performance of four commercial broilers genotypes reared under high ambient temperatures. International Journal of Poultry Science, 10(2), 87-92. 9.馬春祥(1977)。家禽學(279-310頁)。臺北市: 黎明文化事業。 10.Lara, L. J., Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3, 356-369. 11.馬春祥 (1985)。家畜育種實習手冊。臺北市: 合記出版社。 12.Brauer-Vigoderis, R., Ferreira-Tinôco, I. d. F., Pandorf, H., Bastos-Cordeiro, M., Souza-Júnior, J. P. d., Carvalho-Guimarães, M. C. d. (2014). Effect of heating systems in litter quality in broiler facilities in winter conditions. DYNA, 81, 36-40. 13.FAO (Eds.). (1988). Farm structures in tropical climates: Rural infrastructure and Agroindustries Division. Paper presented at Rome. 14.Yahav, S., Straschnow, A., Luger, D., Shinder, D., Tanny, J., Cohen, S. (2004). Ventilation, Sensible Heat Loss, Broiler Energy, and Water Balance Under Harsh Environmental Conditions. Poultry Science, 83, 253–258. 15.Ruzal, M., Shinder, D., Malka, I., Yahav, S. (2011). Ventilation plays an important role in hens' egg production at high ambient temperature. Poultry Science, 90(4), 856-862. 16.雷鵬魁、黃國定、鄭俊男 (1996)。開放式蛋雞舍內溫溼度與氨氣濃度之量測分析。農業機械學刊, 5(3),41-50。 17.趙法清 (1987)。溫熱帶養雞學。臺北市:德龍出版社。 18.Saif, Y., Barnes, H.J. Glisson, J.R. (2003). Disease of Poultry. Paper presented at the 11th. Press, A Blackwell Publishing Co Ames, IowaThigpen. 19.Rahman, M. M., Chu, C. M., Kumaresen, S., Yan, F. Y., Kim, P. H., Mashud, M., Rahman, M. S. (2014). Evaluation of the Modified Chimney Performance to Replace Mechanical Ventilation System for Livestock Housing. Procedia Engineering, 90, 245 – 248. 20.Linden, P. F. (1999). The Fluid Mechanics of Natural Ventilation. Annu. Rev. Fluid Mech, 31, 201-238. 21.Kettlewell, P. J., Hoxey, R. P., Hampson, C. J., Green, N. R., Veale, B. M. (2001). Design and Operation of a Prototype Mechanical Ventilation System for Livestock Transport Vehicles. J. agric. Engng Res., 79(4), 429-439. 22.Redwin, J. S., R.E., L., Mukhtar, S., Carey, J. B. (2002). Concentration and Emissions of Ammonia and Particulate Matter in Tunnel – Ventilated Broiler House under Summer Condition in Texas. Trans. ASAE, 45, 1101-1109. 23.Zajicek, M., Pavel, K. (2013). Longitudinal Ventilation of Broiler House – Simulation of Variants. Engineering for Rural Development, Jelgava, 5, 23-24. 24.項毅、李虎、古志攀、汪開英 (2011)。CFD技術在禽畜舍環境質量分析與評估中的應用。畜牧生態,47(18),60-64。 25.Bustamante, E., García-Diego, F. J., Calvet, S., Estellés, F., Beltrán, P., Hospitaler, A., Torres, A. G. (2013). Exploring ventilation efficiency in poultry buildings The validation of computational fluid dynamics (CFD) in a cross-mechanically ventilated broiler farm. Energies, 6, 2605-2623. 26.Norton, T., Kettlewell, P., Mitchell, M. (2013). A computational analysis of a fully-stocked dual-mode ventilated livestock vehicle during ferry transportation. Comp. Electr. Agric, 93, 217-228. 27.Abid, M., Wajid, H. A., Khan, N. D., Akhtar, S., Zahid, M. A., Usman, M. (2013). Optimization of ventilation system for existing environmentally controlled poultry sheds in Pakistan. World Applied Sciences, 24, 1221-1233. 28.Guerra-GaldoE.H., Sanz, S. C., Barber, F. E., López-Jiménez, P. A. (2015). CFD model for ventilation assessment in poultry houses with different distribution of windows. Energy and Environment, 6(5), 411-424. 29.Rojano, F., Bournet, P. E., Hassouna, M., Robin, P., Kacira, M., Choi, C. Y. (2015). Modelling heat and mass transfer of a broiler house using computational fluid dynamics. Biosys. Eng., 136, 25-38. 30.Kwon, K.-s., Lee, I.-b., Ha, T. (2016). Identification of key factors for dust generation in a nursery pig house and evaluation of dust reduction efficiency using a CFD technique. Biosystems engineering, 151, 28-52. 31.Seo, I. H., Lee, I. B., Moon, O. K. (2012). Modelling of internal environmental conditions in a full-scale commercial pig house containing animals. Biosystems engineering, 111, 91-106. 32.Sapounas, A.A., Campen, J.B., Smits, M.C.J., Van Dooren H.J.C. (2009). Simulating the effect of forced pit ventilation on ammonia emission from a naturally ventilated cow house with CFD. Paper presented at the 4th European Conference on Precision Livestock Farming. 33.Wu, W., Zhai, J., Zhang, G., Nielsen., P. V. (2012). Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment ,63, 179–188. 34.林連雄、吳柏青 (2000)。密閉式雞舍溫溼度場之分析。宜蘭技術學報,4,33-45。 35.Seo, I., Lee, I.-B., Moon, O. K., Kim, H. T., Hwang, H. S., Hong, S. (2009). Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosystems Engineering 104 (1), 106-117. 36.Blanes-Vidal, V., Guijarro, E., Balasch, S., Torres, A. G. (2008). Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosyst. Eng., 100(1), 105-116. 37.Sun, H., Stowell, R. R., Keener, H. M., Michel Jr., F. C. (2002). Two-dimensional computational fluid dynamics (CFD) modeling of air velocity and ammonia distribution in a High-Rise hog building. J. Trans. ASAE, 45, 1559-1568. 38.Bjerg, B., Svidt, K., Zhang, G., Morsing, S. (2000). The effects of pen partitions and thermal pig simulators on air flow in a livestock test room. J. Agric. Eng. Res., 77(3), 317-326. 39.Bansal, N. K., Mathur, J., Mathur, S., Jain, M. (2005). Modeling of window-sized solar chimneys for ventilation. Build. Environ, 40, 1302-1308. 40.Pak, A., Mohammadi, T., Hosseinalipour, S. M., Allahdini, V. (2008). CFD modeling of porous membranes. Desalination, 222, 482-488. 41.Muskat M. (1946). The Flow of Homogeneous Fluids through Porous Media. Paper presented at J.W. Edwards Inc., Ann Arbor, Michigan. 42.ANSYS. (2009). ANSYS FLUENT 12.0 User's Guide.Retrieved from https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node233.htm | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76979 | - |
| dc.description.abstract | 雞舍內的氣流、速度和溫度會影響雞隻的健康,雞舍熱環境條件的優劣決定雞隻的產蛋表現。台灣等熱帶和亞熱帶地區的農業生產所面臨的挑戰為高溫對於蛋雞的負面影響。目前台灣仍以傳統式雞舍的飼養佔九成以上為大宗。因此研究的目的為以傳統式雞舍的重新設計來提供雞隻理想的溫度生活環境,達成保障動物福利、提升蛋類食品安全,以及人類動物共享健康 (One Health)的目標。 研究利用多孔性材質模型將雞籠及雞體簡化為具相同阻力特性的長方體,採用計算流體力學 (Computational Fluid Dynamics,CFD)的方式進行模擬。透過數值模擬,得知流場內各位置的速度和溫度分布。研究分別設計了兩種進風處高度和三種風扇尺寸,以分區通風和側向抽氣的通風策略進行六種改良式傳統雞舍模型降溫效果的比較。 模擬結果發現模型1、4的雞籠平均環境溫度最低,最多可降至35°C,模型3為最高溫,最多降至36°C,兩者相差約1°C。以風扇風速預測雞籠平均環境溫度的直線和二次迴歸方程式已建立,其R2值均大於0.8,代表在一定的範圍下,抽氣速度越高,雞籠平均環境溫度會越低。 預測方程式可供未來雞舍環控系統發展用。為了滿足雞隻正常生產所需的溫度環境,雞舍可採用研究設計的改良式模型,搭配研究所建立具可信度的抽氣速度-雞籠平均環境溫度迴歸方程式,調整風扇風速來下降雞籠環境溫度。 | zh_TW |
| dc.description.abstract | The airflow, velocity and temperature in chicken cages directly affect the health of chickens. The thermal environment of chicken house determines the performance of egg-laying hens. The challenge for agricultural production in tropical and subtropical regions such as Taiwan is the negative impact of high temperatures on chickens. At present, Taiwan is still dominated by traditional chicken houses, accounting for more than 90%. Therefore, the purpose of the research is to provide the ideal temperature living environment for chickens through redesigning traditional chicken house. The redesigned models can achieve the goals of protecting animal welfare, improving egg food safety and ensuring One Health. We use the porous media model to simplify the chickens in the cages into cuboids with the same resistance characteristics, using Computational Fluid Dynamics (CFD) method for simulation. Through numerical simulation, we know the velocity and temperature distribution of each position in the flow field. The ventilation strategy is partition ventilation and side air extraction. The study designed two heights and three fan sizes, comparing the cooling effects of the six models. The simulation results found that the average environmental temperature of the chicken cages of model 1 and 4 was the lowest, and that of model 3 was the highest. Model 1 and 4 can be reduced to 35 °C at most, and model 3 can be reduced to 36° C. The difference between the two is about 1 °C. Linear and quadratic regressions to predict the average environmental temperature of the chicken cage by fan velocity have been established. The R2 values were all greater than 0.8. In a certain range, the higher the velocity, the lower the average temperature. The regressions can be used for the development of chicken house environmental control system. The redesigned models and regressions can be used to adjust the fan velocity to achieve the ideal temperature of chicken cage environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:17Z (GMT). No. of bitstreams: 1 U0001-2907202020420200.pdf: 102736867 bytes, checksum: a345bd34a6e3aeb4f56e40f2dd5f05f9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 ii 摘要 iii Abstract iv 目錄 vi 表目錄 ix 圖目錄 x 縮寫說明 xlix 符號說明 l 第一章 前言 1 1.1 研究動機 1 1.2 文獻探討 4 1.3研究目的及流程 6 第二章 雞舍規劃設計 7 2.1 傳統式雞舍構造 7 2.2 傳統式雞舍改良設計模型 7 第三章 研究方法 9 3.1 統御方程式 9 3.1.1 質量守恆方程式 9 3.1.2 動量守恆方程式 10 3.1.3 能量守恆方程式 10 3.2 數值方法與模擬分析軟體 10 3.3 多孔性材質模型 11 3.3.1 多孔介質的動量方程式 11 3.3.2 多孔介質的達西定律 12 3.3.3 多孔介質的慣性損失 13 3.3.4 多孔介質的阻力係數計算 13 3.4 邊界條件 14 3.5 網格獨立性測試 15 第四章 現場量測資料 16 第五章 計算流體力學結果與討論 17 5.1 雞籠為固體模型及多孔性材質模型之比較 17 5.2 模型1模擬結果 18 5.2.1 速度、溫度分布 18 5.2.2 雞籠環境溫度分布 19 5.2.3 迴歸分析 20 5.3 模型2模擬結果 21 5.3.1 速度、溫度分布 21 5.3.2 雞籠環境溫度分布 22 5.3.3 迴歸分析 23 5.4 模型3模擬結果 24 5.4.1 速度、溫度分布 24 5.4.2 雞籠環境溫度分布 25 5.4.3 迴歸分析 26 5.5 模型4模擬結果 27 5.5.1 速度、溫度分布 27 5.5.2 雞籠環境溫度分布 28 5.5.3 迴歸分析 29 5.6 模型5模擬結果 30 5.6.1 速度、溫度分布 30 5.6.2 雞籠環境溫度分布 31 5.6.3 迴歸分析 32 5.7 模型6模擬結果 33 5.7.1 速度、溫度分布 33 5.7.2 雞籠環境溫度分布 34 5.7.3 迴歸分析 35 第六章 結論與建議 37 第七章 研究限制與未來展望 39 第八章 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 速度 | zh_TW |
| dc.subject | 食安 | zh_TW |
| dc.subject | 雞籠 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | food safety | en |
| dc.subject | chicken cage | en |
| dc.subject | temperature | en |
| dc.subject | velocity | en |
| dc.title | 現行台灣傳統式雞舍飼養環境溫度控制評估與改善設計之研究 | zh_TW |
| dc.title | Temperature Control and Structural Optimal Design of Current Traditional Chicken House in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇大成(Ta-Chen Su),吳涵涵(Charlene Wu),曾子彞(Tzu-I Tseng), 梁佑全(Yu-Chuan Liang) | |
| dc.subject.keyword | 食安,雞籠,溫度,速度, | zh_TW |
| dc.subject.keyword | food safety,chicken cage,temperature,velocity, | en |
| dc.relation.page | 541 | |
| dc.identifier.doi | 10.6342/NTU202002058 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-03 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202020420200.pdf 未授權公開取用 | 100.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
