Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佳堃(Jia-Kun Chen)
dc.contributor.authorYi-Hsuan Hungen
dc.contributor.author洪逸萱zh_TW
dc.date.accessioned2021-07-10T21:42:10Z-
dc.date.available2021-07-10T21:42:10Z-
dc.date.copyright2020-09-07
dc.date.issued2020
dc.date.submitted2020-07-31
dc.identifier.citation1.林金維, 台中某一國立大學的 EMBA 教室以二氧化碳為基礎的室內空氣品質檢測之研究. 2014.
2.Lee, K., et al., Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea. PloS one, 2018. 13(6).
3.Amoatey, P., H. Omidvarborna, and M. Baawain, The modeling and health risk assessment of PM2. 5 from Tema Oil Refinery. Human and Ecological Risk Assessment: An International Journal, 2018. 24(5): p. 1181-1196.
4.Tageldin, M.A., et al., Distribution of COPD-related symptoms in the Middle East and North Africa: results of the BREATHE study. Respiratory medicine, 2012. 106: p. S25-S32.
5.Thurston, G.D., et al., Ischemic heart disease mortality and long-term exposure to source-related components of US fine particle air pollution. Environmental health perspectives, 2016. 124(6): p. 785-794.
6.Lönnroth, K. and M. Raviglione. Global epidemiology of tuberculosis: prospects for control. in Seminars in respiratory and critical care Medicine. 2008. © Thieme Medical Publishers.
7.Rumchev, K., et al., Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. European Respiratory Journal, 2002. 20(2): p. 403-408.
8.Kenny, G.P., et al., Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature, 2019. 6(1): p. 11-36.
9.Andrade, A. and F.H. Dominski, Indoor air quality of environments used for physical exercise and sports practice: Systematic review. Journal of environmental management, 2018. 206: p. 577-586.
10.Yassi, A., et al., Basic environmental health. 2001: Oxford University Press, USA.
11.Melikov, A.K., Advanced air distribution: improving health and comfort while reducing energy use. Indoor air, 2016. 26(1): p. 112-124.
12.Ni, Y., G. Shi, and J. Qu, Indoor PM2. 5, tobacco smoking and chronic lung diseases: A narrative review. Environmental research, 2019: p. 108910.
13.Gołofit‐Szymczak, M. and R.L. Górny, Microbiological air quality in office buildings equipped with dventilation systems. Indoor Air, 2018. 28(6): p. 792-805.
14.Seppanen, O.A. and W.J. Fisk, Summary of human responses to ventilation. 2004.
15.蔡佩芬 and 蔡春進, 某半導體封裝廠辦公區空氣品質與員工舒適度的調查研究. 2012.
16.Nag, P.K., Sick Building Syndrome and Other Building-Related Illnesses, in Office Buildings. 2019, Springer. p. 53-103.
17.Lu, C.-Y., et al., Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. International journal of environmental research and public health, 2015. 12(6): p. 5833-5845.
18.吳宥姍, 室內也有空汙警訊, 你知道嗎?-7 個看不到的室內空氣汙染源. 禪天下, 2018(156): p. 12-22.
19.Jung, C.-C., et al., Allostatic load model associated with indoor environmental quality and sick building syndrome among office workers. PloS one, 2014. 9(4).
20.Redlich, C.A., J. Sparer, and M.R. Cullen, Sick-building syndrome. The Lancet, 1997. 349(9057): p. 1013-1016.
21.陳雅蓁, 人工密閉環境中二氧化碳對人類生理反應之研究. 交通大學生醫工程研究所學位論文, 2011: p. 1-35.
22.Vehviläinen, T., et al., High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. Journal of occupational and environmental hygiene, 2016. 13(1): p. 19-29.
23.Bourbeau, J., C. Brisson, and S. Allaire, Prevalence of the sick building syndrome symptoms in office workers before and six months and three years after being exposed to a building with an improved ventilation system. Occupational and Environmental Medicine, 1997. 54(1): p. 49-53.
24.孫國書, 室內空氣品質管理與改善簡介.
25.Tsai, D.-H., J.-S. Lin, and C.-C. Chan, Office workers’ sick building syndrome and indoor carbon dioxide concentrations. Journal of occupational and environmental hygiene, 2012. 9(5): p. 345-351.
26.Rackes, A., T. Ben‐David, and M. Waring, Outcome‐based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions. Indoor air, 2018. 28(4): p. 585-603.
27.MacNaughton, P., et al., Economic, environmental and health implications of enhanced ventilation in office buildings. International journal of environmental research and public health, 2015. 12(11): p. 14709-14722.
28.黃忠義, 居家型空間 CO2 濃度降解之研究. 2014.
29.Chauhan, N., et al., Study of indoor radon distribution using measurements and CFD modeling. Journal of environmental radioactivity, 2014. 136: p. 105-111.
30.Chauhan, N. and R. Chauhan, Active-passive measurements and CFD based modelling for indoor radon dispersion study. Journal of environmental radioactivity, 2015. 144: p. 57-61.
31.財團法人台灣商品檢測驗證中心(簡稱ETC), 全熱交換器可改善居家環境空氣品質. 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76976-
dc.description.abstract近年來,由於社會大眾對於室內空氣品質的注重與要求以及目前台灣辦公室空氣品質與通風系統設備的現況,因此本研究目的設定為設計出辦公室通風換氣系統進出風口位置與排列對於二氧化碳濃度有最佳的淨化效果,希望以更有效與簡便的方法淨化室內空氣,也讓辦公人員有更好的工作環境。
本研究利用 SOLIDWORKS 與 Ansys Fluent computational fluid dynamics (CFD)進行繪畫設計出模擬的辦公室空間與流場與濃度模擬。模組中有不同的參數變化像是有不同尺寸的辦公空間與進出風口位置與高度的排列組合,並且再加入辦公人員或使用有無檔板的辦公桌加入比較,進行參數各排列組合比較換氣效果差異。
本研究根據模擬結果發現當空間只有一套換氣系統時,隨著空間變大,新鮮空氣會無法到達每個角落,因此應依空間大小搭配不同數量的通風換氣系統。而當空間中有汙染物時,通風換氣系統於對角位置,當流量達到一程度時,發現其實進出口風高度差並不會造成太大影響,但有檔板的辦公桌對於通風換氣效果會有較佳的作用。但是當空間變大時,會發現雖然通風換氣系統流量相同且都位於對角時,通風換氣系統有兩套的換氣效果會好於只有一套通風換氣系統的換氣效果,且進出風口高度差較大時效果也會好於進出風口高度差較小時。
最後,雖然很多建築規範中都已經寫到通風換氣系統應安裝最遠距離為對角位置,才能有較好的通風效果。但是經由本研究發現,這樣的理論在小房間是成立的,但是當空間變大時,就算是安裝對角或流量到達時,卻沒有搭配不同數量與位置的換氣系統或是變化進出風口高度,對於換氣效果是有限的。因此本研究得到結論為,對角換氣系統有一定的空間大小限制,但當空間變大時,應規劃多套通風換氣系統排列才能達到良好的換氣效果,讓我們有更良好的室內空氣品質環境。
zh_TW
dc.description.abstractIn recent years, the public's attention to indoor air quality and the current situation of Taiwan's office air products and ventilation system equipment, the goal of this research was set to optimize location and arrangement of the entrance and exit of the ventilation system in the design office for purification of carbon dioxide concentration. As a result, we hope to purify the indoor air in a more effective and convenient way, so that office workers have a better working environment.
In this study, SOLIDWORKS and Ansys Fluent computational fluid dynamics (CFD)
were used for drawing design and simulation. It was necessary to discuss the simulation of office space and flow field and concentration simulation under different parameters.
According to the simulation results, this study found that many building codes have written that the ventilation system should be installed at the longest distance in a diagonal position to have a better ventilation system. However, through this study, it was found that such a theory is established in a small room, but when the space becomes larger, even if it is installed diagonally or the flow arrives, it is not equipped with a different number and position of the ventilation system or the length of the inlet and outlet. The effect on ventilation will be limited. Therefore, this study concluded that the diagonal ventilation system has a space size limit. When the space becomes larger, multiple arrangements of ventilation systems should be planned to achieve a good ventilation effect. We also hope that through these methods, we will have a better indoor air.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:42:10Z (GMT). No. of bitstreams: 1
U0001-3007202012403300.pdf: 28955121 bytes, checksum: 492b0c3e22324b55a3f2cf62d7dc4791 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 iii
摘要 iv
Abstract v
目錄 vi
表目錄 ix
圖目錄 x
縮寫說明 l
符號說明 li
第一章 前言 1
1.1 研究動機 1
1.2 文獻探討 2
1.2.1 建築物通風系統的重要性 2
1.2.2 目前大多辦公室現況 2
1.2.3 病態建築症候群(SBS) 2
1.2.4 二氧化碳 (carbon dioxide) 3
1.2.5 較好的換氣效果皆高於法規換氣量 3
1.2.6 法規 4
1.2.7 CFD數值模擬 5
1.2.8 市面上已有的通風換氣技術 5
1.3研究目的及流程 7
第二章 研究方法 1
2.1 相關文獻與背景資料之收集 2
2.2 模擬分析軟體 2
2.3 統御方程式 3
2.3.1質量守恆方程式 3
2.3.2 動量守恆方程式 3
2.3.3 紊流模式 4
2.3.4 UDS方程式 4
2.4 初始條件與邊界條件 5
2.4.1空間尺寸 5
2.4.2辦公室人員與辦公桌尺寸(solid surface) 5
2.4.3濃度源設定(UDS) 6
2.4.4出風口(inlet)與進風口(outlet)設定 6
2.4.5設定出風口的抽氣速度v (換氣量)(m/s)(圖2-7) 7
2.4.6模型變化參數排列組合有: 8
2.5 網格獨立性 9
第三章 空空間中換氣系統進出風口位置排列結果與討論 10
第四章 無辦公人員的辦公室空間結果與討論 11
4.1 探討三種尺寸空間中,出風口抽氣流量相同下(v = 1 m/s),不同高度出風口的通風換氣效果之差異結果 11
4.1.1 小型空間 11
4.1.2 中型空間 13
4.1.3 大型空間 15
4.2探討小型空間中,出風口抽氣流量不同下,不同高度出風口的通風換氣效果之差異與進行模態分組之結果 17
第五章 有辦公人員的辦公室空間結果與討論 18
5.1辦公室人員為濃度源設為1 ppm二氧化碳,做為追蹤氣體分佈模擬 18
5.1.1探討小型空間經模態分組後,出風口抽氣流量不同下,不同高度進出風口的通風換氣效果之結果(辦公桌有檔板) 18
5.1.2探討小型空間經模態分組後,出風口抽氣流量相同下,不同高度進出風口的通風換氣效果之結果(辦公桌無檔板) 27
5.1.3探討小型空間經模態分組後,出風口抽氣流量相同下,不同高度進出風口、位置與辦公桌有無檔板排列組合通風換氣效果差異之結果 29
5.1.4 探討中型空間中,出風口抽氣流量相同下,不同高度進出風口與位置排列組合通風換氣效果之結果(辦公桌有檔板) 30
5.2辦公室人員為濃度源設為40000 ppm,空氣中原本存在400 ppm的二氧化碳,作為實際情況分布模擬 34
5.2.1探討小型空間經5.1模擬後,出風口抽氣流量不同下,不同高度進出風口的通風換氣效果之結果(辦公桌有檔板) 34
5.2.2探討中型空間經5.1模擬後,出風口抽氣流量相同下,不同高度進出風口與位置排列組合通風換氣效果之結果(辦公桌有檔板) 37
第六章 結論 39
第七章 參考文獻 42
dc.language.isozh-TW
dc.subject二氧化碳zh_TW
dc.subject辦公室空間zh_TW
dc.subject通風換氣系統zh_TW
dc.subjectofficeen
dc.subjectcarbon dioxideen
dc.subjectventilation systemen
dc.title辦公空間換氣系統進出風口的排列與濃度相關性研究zh_TW
dc.titleThe Correlation between the Arrangement of inlets and outlets of Ventilation system and Concentration in Officeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇大成 (Ta-Chen Su),吳涵涵 (Charlene Wu),曾子彝 (Tzu-I Tseng),梁佑全(Yu-Chuan Liang)
dc.subject.keyword辦公室空間,通風換氣系統,二氧化碳,zh_TW
dc.subject.keywordoffice,ventilation system,carbon dioxide,en
dc.relation.page251
dc.identifier.doi10.6342/NTU202002093
dc.rights.note未授權
dc.date.accepted2020-07-31
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202012403300.pdf
  未授權公開取用
28.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved