請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪治平(Jyhpyng Wang) | |
| dc.contributor.author | Chih-Hsuan Lin | en |
| dc.contributor.author | 林稚軒 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:01Z | - |
| dc.date.available | 2021-07-10T21:42:01Z | - |
| dc.date.copyright | 2020-08-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-16 | |
| dc.identifier.citation | [1] J. C. Kieffer, P. Audebert, M. Chaker, J. P. Matte, H. Pépin, T. W. Johnston, P. Maine, D. Meyerhofer, J. Delettrez, D. Strickland, P. Bado, and G. Mourou,“Short-pulse laser absorption in very steep plasma density gradients,” Phys. Rev. Lett., vol. 62, no. 7, pp. 760–763, Feb. 1989. doi: 10.1103/PhysRevLett.62.760. [2] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett., vol. 63, no. 20, pp. 2212–2215, Nov. 1989, Publisher: American Physical Society. doi: 10.1103/PhysRevLett.63.2212. [3] P. Gibbon, Short Pulse Laser Interactions with Matter. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2005, 328 pp., isbn: 978-1-86094-135-1. doi: 10.1142/p116. [4] K. S. Thorne, Modern classical physics : Optics, fluids, plasmas, elasticity, relativity, and statistical physics / kip s. thorne and roger d. blandford. eng, Princeton, New Jersey. [5] G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Physical Review E, vol. 69, no. 2, p. 026 402, 2 月9, 2004. doi: 10.1103/PhysRevE.69.026402. [6] S. Inoue, K. Maeda, S. Tokita, K. Mori, K. Teramoto, M. Hashida, and S. Sakabe, “Single plasma mirror providing 104 contrast enhancement and 70% reflectivity for intense femtosecond lasers,” Appl. Opt., vol. 55, no. 21, pp. 5647–5651, Jul. 2016, Publisher: OSA. doi: 10.1364/AO.55.005647. [7] (2017). “Technical data of vantablack,” TECHNICAL DATA, [Online]. Available: https://www.surreynanosystems.com/resources. [8] H. Ajiki and T. Ando, “Electronic states of carbon nanotubes,” Journal of the Physical Society of Japan, vol. 62, no. 4, pp. 1255–1266, 1993. doi: 10.1143/JPSJ.62.1255. eprint: https://doi.org/10.1143/JPSJ.62.1255. [9] K. Haris and A. Kramida, “Critically evaluated spectral data for neutral carbon,”The Astrophysical Journal Supplement Series, vol. 233, no. 1, p. 16, Nov. 2017, Publisher: American Astronomical Society. doi: 10.3847/1538-4365/aa86ab. [10] C. E. Moore, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, CI, CII, CIII, CIV, CV. CVI. U.S. Department of Commerce, 1970, 73 pp. [11] Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,”The Physics of Fluids, vol. 27, no. 5, pp. 1273–1286, 1984. doi: 10.1063/1.864744. [12] P. K. Velpula, D. Kramer, M. Ďurák, and B. Rus, “Femtosecond laser damage resistance of beam dump materials for high-peak power laser systems,” Optical Engineering, vol. 59, no. 5, pp. 1–9, 2020, Publisher: SPIE. doi: 10.1117/1.OE.59.5.056108. [13] P. K. Velpula, D. Kramer, M. Ďurák, and B. Rus, “The beam dump materials and their LIDT measurements for PW/multi-PW laser systems,” vol. 11034, P. Bakule and C. L. Haefner, Eds., pp. 72–77, 2019, Backup Publisher: International Society for Optics and Photonics. doi: 10.1117/12.2523070. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76972 | - |
| dc.description.abstract | 過去的電漿鏡(plasma mirror)實驗會在靶材表面鍍上抗反射膜(antireflection coating),其目的是用來提升自身雷射之對比度。當高強度雷射脈衝經 過靶材時,其預脈衝(pre-pulse)被抗反射膜過濾,雷射主脈衝(main pulse)與 靶材作用形成電漿鏡反射,反射之雷射脈衝與入射脈衝相較下對比度大幅提升, 其數值為電漿鏡反射率和抗反射鍍膜(AR coating)反射率的比值。但由於抗反 射鍍膜之反射率通常不會低於千分之一,因此電漿鏡反射後雷射光對比度最好 能提升約 102。本論文選用散射率極低且幾乎完全吸收之靶材,利用極低散射之 特性過濾預脈衝,而主脈衝到達時形成電漿鏡反射,目標是讓電漿鏡反射後對 比度提升能突破 102 之限制。靶材為 Vantablack,吸收率高達 99.996% 且全積 分散射(Total Integrated Scatter)約 0.01%,初步估算對比度提升可高達 106。 而 Vantablack 電漿鏡反射率估算方式使用居量傳播模型(population-propagation model),根據理論模型來評估高強度鈦藍寶石雷射(Ti:Sapphire laser)和 CO2 雷射打 Vantablack 後形成電漿鏡之反射率,再從反射率和預脈衝之散射率推算對比度能提升多少,以做為實驗執行前的評估。 | zh_TW |
| dc.description.abstract | In the past plasma mirror experiment, anti-reflection coating on the surface of the target is used to improve the temporal contrast of laser pulses. The mechanism of contrast enhancement is that anti-reflection coating was applied to filter the pre-pulse of the laser, and the main ultraintense laser pulse interacts with the target to form plasma mirrors which can reflect the main laser pulse. The contrast of reflected beam is improved compared to the incident laser pulse, and the contrast enhancement depends on the ratio of plasma mirror reflectivity to anti-reflection coating reflectivity. However, anti-reflection coating reflectivity is not less than onethousandth and therefore the maximum contrast improvement is about 102 . In this paper, a target with ultralow scattering is selected to achieve the goal to exceed the 102 limitation of contrast enhancement. The pre-pulse is filtered due to ultralow scattering and plasma mirrors are formed as the main pulse arrives the surface of target. The target is Vantablack, absorbing up to 99.996% and total integrated scatter of Vantablack is about 0.01%. It is estimated the contrast improvement of 106 is achieved with Vantablack. We use population-propagation model to estimate Vantablack plasma reflectivity with ultraintense Ti: Sapphire laser or CO2 laser. With plasma reflectivity and scattering of pre-pulse, we can estimate contrast improvement for experimental evaluation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:01Z (GMT). No. of bitstreams: 1 U0001-3007202018150900.pdf: 4867995 bytes, checksum: 310a8cce1c0e7f95fa448c316cd1eb27 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 v Abstract vii 誌謝 ix 目錄 xi 第一章序論1 1.1 電漿簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 光致游離:高功率雷射與物質作用產生電漿機制. . . . . . . . . . . . . . . . . . . . . . . 1 1.3 電漿擴散與重組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 電漿臨界密度與電漿鏡介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章電漿鏡領域現況7 2.1 電漿鏡靶材選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 電漿鏡反射率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 理論模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 方程式解法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 用Matlab 來求解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Matlab 計算結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 改善對比度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第三章利用Vantablack 產生電漿鏡21 3.1 Vantablack 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 奈米碳管之物理特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 利用Vanblack 作為電漿鏡之優勢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 估算Vantablack 之電子-離子平均碰撞時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 估算Vantablack-CVD 表面成為電漿鏡之反射率. . . . . . . . . . . . . . . . . . . . . . . 29 3.6 估算Vantablack S-VIS 表面成為電漿鏡之反射率. . . . . . . . . . . . . . . . . . . . . . 33 3.7 Vantablack 居量傳播模型之修正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 第四章用CO2 雷射做電漿鏡實驗39 4.1 Ti:sapphire 雷射觸發電漿鏡形成讓CO2 雷射反射通過. . . . . . . . . . . . . . . . 39 4.2 CO2 雷射觸發形成電漿鏡反射自身雷射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 第五章總結43 參考文獻45 附錄A 程式碼47 A.1 石英電漿鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.2 Ti:sapphire 雷射打Vantablack 形成電漿鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A.3 CO2 雷射打Vantablack 形成電漿鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 尖峰強度 | zh_TW |
| dc.subject | 奈米碳管黑體 | zh_TW |
| dc.subject | 電漿鏡 | zh_TW |
| dc.subject | 居量傳播模型 | zh_TW |
| dc.subject | 臨界密度 | zh_TW |
| dc.subject | 反射率 | zh_TW |
| dc.subject | 對比度提升 | zh_TW |
| dc.subject | Vantablack | en |
| dc.subject | Critical density | en |
| dc.subject | Population-propagation model | en |
| dc.subject | Plasma mirror | en |
| dc.subject | Peak intensity | en |
| dc.subject | Contrast enhancement | en |
| dc.subject | Reflectivity | en |
| dc.title | 藉由奈米碳管黑體作為電漿鏡來提升強場鈦藍寶石雷射系統106對比度 | zh_TW |
| dc.title | Vertically aligned carbon nanotube arrays as plasma mirrors for 106-fold contrast enhancement of terawatt Ti:sapphire laser system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳仕宏(Shih-Hung Chen),鄭宇翔(Yu-Hsiang Cheng) | |
| dc.subject.keyword | 奈米碳管黑體,電漿鏡,居量傳播模型,臨界密度,反射率,對比度提升,尖峰強度, | zh_TW |
| dc.subject.keyword | Vantablack,Plasma mirror,Population-propagation model,Critical density,Reflectivity,Contrast enhancement,Peak intensity, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202002123 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202018150900.pdf 未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
