Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張繼堯(Chi-Yao Chang)
dc.contributor.authorJia-Ming Luoen
dc.contributor.author羅加銘zh_TW
dc.date.accessioned2021-07-10T21:41:33Z-
dc.date.available2021-07-10T21:41:33Z-
dc.date.copyright2020-08-13
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citation江明賢。2018。神經壞死病毒外套蛋白和石斑魚腦細胞的蛋白質相互作用。國立金門大學食品科學研究所碩士論文。
林怡彣。2019。感染石斑魚腦細胞神經壞死病毒 B2 蛋白之機制探討。國立臺灣海洋大學生命科學暨生物科技學系碩士論文。
Afonina, E., Stauber, R., Pavlakis, G. N. (1998). The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. The Journal of biological chemistry, 273(21), 13015-13021.
Ahlquist, P., Noueiry, A. O., Lee, W. M., Kushner, D. B., Dye, B. T. (2003). Host factors in positive-strand RNA virus genome replication. J Virol, 77(15), 8181-8186. Aitken, C. E., Lorsch, J. R. (2012). A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol, 19(6), 568-576.
Alvarez, E., Castello, A., Menendez-Arias, L., Carrasco, L. (2006). HIV protease cleaves poly(A)-binding protein. Biochem J, 396(2), 219-226.
Ball, L. A. (1995). Requirements for the self-directed replication of flock house virus RNA 1. J Virol, 69(2), 720-727.
Balvay, L., Soto Rifo, R., Ricci, E. P., Decimo, D., Ohlmann, T. (2009). Structural and functional diversity of viral IRESes. Biochim Biophys Acta, 1789(9-10), 542-557. Bhatnagar, S., Soni, M. S., Wrighton, L. S., Hebert, A. S., Zhou, A. S., Paul, P. K., . . . Attie, A. D. (2014). Phosphorylation and degradation of tomosyn-2 de-represses insulin secretion. J Biol Chem, 289(36), 25276-25286.
Black, T. L., Safer, B., Hovanessian, A., Katze, M. G. (1989). The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: implications for translational regulation. J Virol, 63(5), 2244-2251.
Blakqori, G., van Knippenberg, I., Elliott, R. M. (2009). Bunyamwera orthobunyavirus Ssegment untranslated regions mediate poly(A) tail-independent translation. J Virol, 83(8), 3637-3646.
Blanco-Perez, M., Hernandez, C. (2016). Evidence supporting a premature termination mechanism for subgenomic RNA transcription in Pelargonium line pattern virus: identification of a critical long-range RNA-RNA interaction and functional variants through mutagenesis. J Gen Virol, 97(6), 1469-1480.
Bonami, J. R., Shi, Z., Qian, D., Sri Widada, J. (2005). White tail disease of the giant freshwater prawn, Macrobrachium rosenbergii: separation of the associated virions and characterization of MrNV as a new type of nodavirus. J Fish Dis, 28(1), 23-31.
Brook, M., Smith, J. W., Gray, N. K. (2009). The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction, 137(4), 595-617.
Chang, J. S., Chi, S. C. (2015). GHSC70 is involved in the cellular entry of nervous necrosis virus. J Virol, 89(1), 61-70.
Chen, Y. M., Wang, T. Y., Chen, T. Y. (2014). Immunity to betanodavirus infections of marine fish. Dev Comp Immunol, 43(2), 174-183.
Connor, J. H., Lyles, D. S. (2002). Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. J Virol, 76(20), 10177-10187.
Connor, J. H., Lyles, D. S. (2005). Inhibition of host and viral translation during vesicular stomatitis virus infection. eIF2 is responsible for the inhibition of viral but not host translation. J Biol Chem, 280(14), 13512-13519.
Copeland, A. M., Altamura, L. A., Van Deusen, N. M., Schmaljohn, C. S. (2013). Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol, 87(21), 11659-11669. Copeland, A. M., Van Deusen, N. M., Schmaljohn, C. S. (2015). Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology, 486, 88-93.
Costa, J. Z., Thompson, K. D. (2016). Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish Shellfish Immunol, 53, 35-49.
Doan, Q. K., Vandeputte, M., Chatain, B., Morin, T., Allal, F. (2017). Viral encephalopathy and retinopathy in aquaculture: a review. J Fish Dis, 40(5), 717-742. Dobrikova, E., Shveygert, M., Walters, R., Gromeier, M. (2010). Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol, 84(1), 270-279.
Edgil, D., Polacek, C., Harris, E. (2006). Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol, 80(6), 2976- 2986.
Elliott, G., Pheasant, K., Ebert-Keel, K., Stylianou, J., Franklyn, A., Jones, J. (2018). Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease. J Virol, 92(17).
Feng, G. S., Chong, K., Kumar, A., Williams, B. R. (1992). Identification of doublestranded RNA-binding domains in the interferon-induced double-stranded RNAactivated p68 kinase. Proc Natl Acad Sci U S A, 89(12), 5447-5451.
Firth, A. E., Brierley, I. (2012). Non-canonical translation in RNA viruses. J Gen Virol, 93(Pt 7), 1385-1409.
Garcia, M. A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., Esteban, M. (2006). Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev, 70(4), 1032-1060.
Gebauer, F., Hentze, M. W. (2004). Molecular mechanisms of translational control. Nat Rev Mol Cell Biol, 5(10), 827-835.
Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A, 93(11), 5578-5583.
Gorgoni, B., Gray, N. K. (2004). The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genomic Proteomic, 3(2), 125-141.
Guo, X., Zhang, M., Zhang, X., Tan, X., Guo, H., Zeng, W., . . . He, Q. (2017). Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication. Viruses, 9(3). Harb, M., Becker, M. M., Vitour, D., Baron, C. H., Vende, P., Brown, S. C., . . . Poncet, D. (2008). Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J Virol, 82(22), 11283-11293.
Ho, B. C., Yu, S. L., Chen, J. J., Chang, S. Y., Yan, B. S., Hong, Q. S., . . . Yang, P. C. (2011). Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe, 9(1), 58-69.
Imataka, H., Gradi, A., Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)- dependent translation. EMBO J, 17(24), 7480-7489.
Ivanov, A., Mikhailova, T., Eliseev, B., Yeramala, L., Sokolova, E., Susorov, D., . . . Alkalaeva, E. (2016). PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res, 44(16), 7766-7776. Iwamoto, T., Mise, K., Mori, K., Arimoto, M., Nakai, T., Okuno, T. (2001). Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. J Gen Virol, 82(Pt 11), 2653-2662.
Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K., Arimoto, M., . . . Nakai, T. (2005). Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol, 86(Pt 10), 2807-2816.
Iwamoto, T., Okinaka, Y., Mise, K., Mori, K., Arimoto, M., Okuno, T., Nakai, T. (2004). Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol, 78(3), 1256-1262.
Jackson, R. J., Hellen, C. U., Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol, 11(2), 113-127.
Jan, E., Mohr, I., Walsh, D. (2016). A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol, 3(1), 283-307.
Janku, F., Yap, T. A., Meric-Bernstam, F. (2018). Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol, 15(5), 273-291.
Jiwan, S. D., Wu, B., White, K. A. (2011). Subgenomic mRNA transcription in tobacco necrosis virus. Virology, 418(1), 1-11.
Joubert, P. E., Stapleford, K., Guivel-Benhassine, F., Vignuzzi, M., Schwartz, O., Albert, M. L. (2015). Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway. PLoS Pathog, 11(8), e1005091. Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N., Sonenberg, N. (2005). Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev, 19(1), 104-113.
Kanno, T., Sato, Y., Sata, T., Katano, H. (2006). Expression of Kaposi's sarcoma-associated herpesvirus-encoded K10/10.1 protein in tissues and its interaction with poly(A)- binding protein. Virology, 352(1), 100-109.
Kim, J. O., Kim, W. S., Oh, M. J. (2019). Investigation of nervous necrosis virus (NNV) replication in vitro using RNA in situ hybridization. Virus Res, 260, 78-85. Kobayashi, M., Arias, C., Garabedian, A., Palmenberg, A. C., Mohr, I. (2012). Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication. J Virol, 86(19), 10686-10694. Komar, A. A., Hatzoglou, M. (2011). Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle, 10(2), 229-240.
Kuhn, U., Wahle, E. (2004). Structure and function of poly(A) binding proteins. Biochim Biophys Acta, 1678(2-3), 67-84.
Kumar, G. R., Shum, L., Glaunsinger, B. A. (2011). Importin alpha-mediated nuclear import of cytoplasmic poly(A) binding protein occurs as a direct consequence of cytoplasmic mRNA depletion. Mol Cell Biol, 31(15), 3113-3125.
Kuyumcu-Martinez, M., Belliot, G., Sosnovtsev, S. V., Chang, K. O., Green, K. Y., Lloyd, R. E. (2004). Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol, 78(15), 8172-8182.
Kuyumcu-Martinez, N. M., Van Eden, M. E., Younan, P., Lloyd, R. E. (2004). Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol, 24(4), 1779-1790.
Le, H., Tanguay, R. L., Balasta, M. L., Wei, C. C., Browning, K. S., Metz, A. M., . . . Gallie, D. R. (1997). Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem, 272(26), 16247-16255.
Lee, D. H., Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol, 8(10), 397-403.
Lecker, S. H., Goldberg, A. L., Mitch, W. E. (2006). Protein Degradation by the Ubiquitin– Proteasome Pathway in Normal and Disease States. Journal of the American Society of Nephrology, 17(7), 1807.
Li, C., Liu, J., Zhang, X., Wei, S., Huang, X., Huang, Y., . . . Qin, Q. (2019). Fish Autophagy Protein 5 Exerts Negative Regulation on Antiviral Immune Response Against Iridovirus and Nodavirus. Front Immunol, 10, 517.
Li, Y., Fang, L., Zhou, Y., Tao, R., Wang, D., Xiao, S. (2018). Porcine Reproductive and Respiratory Syndrome Virus Infection Induces both eIF2α PhosphorylationDependent and -Independent Host Translation Shutoff. J Virol, 92(16). Lindenbach, B. D., Sgro, J. Y., Ahlquist, P. (2002). Long-distance base pairing in flock house virus RNA1 regulates subgenomic RNA3 synthesis and RNA2 replication. J Virol, 76(8), 3905-3919.
Linero, F., Welnowska, E., Carrasco, L., Scolaro, L. (2013). Participation of eIF4F complex in Junin virus infection: blockage of eIF4E does not impair virus replication. Cell Microbiol, 15(10), 1766-1782.
Malys, N., McCarthy, J. E. (2011). Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci, 68(6), 991-1003.
Mangus, D. A., Evans, M. C., Jacobson, A. (2003). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol, 4(7), 223.
Martin, S., Saha, B., Riley, J. L. (2012). The battle over mTOR: an emerging theatre in host-pathogen immunity. PLoS Pathog, 8(9), e1002894.
McKnight, K. L., Lemon, S. M. (2018). Hepatitis A Virus Genome Organization and Replication Strategy. Cold Spring Harb Perspect Med, 8(12).
Meurs, E. F., Watanabe, Y., Kadereit, S., Barber, G. N., Katze, M. G., Chong, K., . . . Hovanessian, A. G. (1992). Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J Virol, 66(10), 5805-5814.
Miller, W. A., Koev, G. (2000). Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology, 273(1), 1-8.
Miras, M., Miller, W. A., Truniger, V., Aranda, M. A. (2017). Non-canonical Translation in Plant RNA Viruses. Front Plant Sci, 8, 494.
Mohr, I., Sonenberg, N. (2012). Host translation at the nexus of infection and immunity. Cell Host Microbe, 12(4), 470-483.
Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology, 187(1), 368-371.
Munroe, D., Jacobson, A. (1990). Tales of poly(A): a review. Gene, 91(2), 151-158. Mure, F., Panthu, B., Zanella-Cleon, I., Delolme, F., Manet, E., Ohlmann, T., Gruffat, H. (2018). Epstein-Barr Virus Protein EB2 Stimulates Translation Initiation of mRNAs through Direct Interactions with both Poly(A)-Binding Protein and Eukaryotic Initiation Factor 4G. J Virol, 92(3).
Narabayashi, T., Kaido, M., Okuno, T., Mise, K. (2014). Base-paired structure in the 5' untranslated region is required for the efficient amplification of negative-strand RNA3 in the bromovirus melandrium yellow fleck virus. Virus Res, 188, 162-169.
Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C. T., Makino, S. (2008). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol, 82(9), 4471-4479.
Newburn, L. R., White, K. A. (2015). Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology, 479-480, 434-443.
Polacek, C., Friebe, P., Harris, E. (2009). Poly(A)-binding protein binds to the nonpolyadenylated 3' untranslated region of dengue virus and modulates translation efficiency. J Gen Virol, 90(Pt 3), 687-692.
Polo, S., Ketner, G., Levis, R., Falgout, B. (1997). Infectious RNA transcripts from fulllength dengue virus type 2 cDNA clones made in yeast. J Virol, 71(7), 5366-5374.
Roth, H., Magg, V., Uch, F., Mutz, P., Klein, P., Haneke, K., . . . Ruggieri, A. (2017). Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses. mBio, 8(1).
Sarbassov, D. D., Guertin, D. A., Ali, S. M., Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101.
Smith, R. W., Gray, N. K. (2010). Poly(A)-binding protein (PABP): a common viral target. Biochem J, 426(1), 1-12.
Sun, D., Wang, M., Wen, X., Cheng, A., Jia, R., Sun, K., . . . Chen, X. (2017). Cleavage of poly(A)-binding protein by duck hepatitis A virus 3C protease. Sci Rep, 7(1), 16261.
Sun, Y., Yu, S., Ding, N., Meng, C., Meng, S., Zhang, S., . . . Ding, C. (2014). Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol, 88(1), 525-537.
Sztuba-Solinska, J., Stollar, V., Bujarski, J. J. (2011). Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology, 412(2), 245-255.
Tarun, S. Z., Jr., Sachs, A. B. (1996). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J, 15(24), 7168-7177. Van Der Kelen, K., Beyaert, R., Inze, D., De Veylder, L. (2009). Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol, 44(4), 143-168.
Walsh, D., Mathews, M. B., Mohr, I. (2013). Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol, 5(1), a012351. Walsh, D., Perez, C., Notary, J., Mohr, I. (2005). Regulation of the translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. J Virol, 79(13), 8057-8064.
White, J. P., Reineke, L. C., Lloyd, R. E. (2011). Poliovirus switches to an eIF2- independent mode of translation during infection. J Virol, 85(17), 8884-8893.
White, K. A. (2002). The premature termination model: a possible third mechanism for subgenomic mRNA transcription in (+)-strand RNA viruses. Virology, 304(2), 147- 154. Wiseman, S. L., Shimizu, Y., Palfrey, C., Nairn, A. C. (2013). Proteasomal degradation of eukaryotic elongation factor-2 kinase (EF2K) is regulated by cAMP-PKA signaling and the SCFbetaTRCP ubiquitin E3 ligase. J Biol Chem, 288(24), 17803-17811. Wu, B., Oliveri, S., Mandic, J., White, K. A. (2010). Evidence for a premature termination mechanism of subgenomic mRNA transcription in a carmovirus. J Virol, 84(15), 7904-7907.
Wu, Y. C., Lu, Y. F., Chi, S. C. (2010). Anti-viral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp. Fish Shellfish Immunol, 28(3), 467-475.
Wu, Y. C., Tsai, P. Y., Chan, J. C., Chi, S. C. (2016). Endogenous grouper and barramundi Mx proteins facilitated the clearance of betanodavirus RNA-dependent RNA polymerase. Dev Comp Immunol, 59, 110-120.
Yoshida, M., Yoshida, K., Kozlov, G., Lim, N. S., De Crescenzo, G., Pang, Z., . . . Sonenberg, N. (2006). Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J, 25(9), 1934-1944.
Zhang, B., Morace, G., Gauss-Muller, V., Kusov, Y. (2007). Poly(A) binding protein, Cterminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res, 35(17), 5975-5984.
Zhou, J. H., Zhang, J., Sun, D. J., Ma, Q., Chen, H. T., Ma, L. N., . . . Liu, Y. S. (2013). The distribution of synonymous codon choice in the translation initiation region of dengue virus. PLoS One, 8(10), e77239.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76956-
dc.description.abstract神經壞死病毒(nervous necrosis virus, NNV)為一種對魚類致死率極高之病毒,其主要之攻擊目標為神經系統,包含腦、脊髓與視網膜等,終致感染魚隻沉底死亡。此病毒挾其高致死率令全球養殖業蒙受巨大的經濟損失。為瞭解神經壞死病毒之感染機轉,本實驗室以大腸桿菌表現神經壞死病毒殼蛋白,此殼蛋白會自行組裝為類病毒顆粒(virus-like particle, VLP)。以此 VLP 製備親和性管柱,用以純化點帶石斑魚腦(grouper brain, GB)細胞之結合蛋白,此結合蛋白經 LC/MS/MS 鑑定分析,結果顯示 polyadenylate binding protein(PABP)與類病毒顆粒具有非常高的親和性。PABP 為細胞正規轉譯機制中,強化轉譯效率之重要蛋白。部分病毒以此為標的來抑制宿主細胞轉譯能力,而 NNV的 RNA基因體與訊息 RNA 並不具有 3’端多聚腺苷尾。因此殼蛋白與 PABP 間強大的親和性,引起我們高度的興趣。點帶石斑魚的 PABP 基因編碼 633 個胺基酸分子量推估為 69, 360 dalton,N 端含有 4 個 RNA recognition motifs (RRM),C 端含有一 C- terminal domain,其間為 proline-rich linker。此基因相當保守與人類細胞之 PABP 於核酸序列有 94.0%之相似性,於胺基酸序列則有 99.8%相似。為了瞭解 NNV 感染 GB 細胞的轉譯調控,首先以 puromycin 標示法利用免疫細胞化學染色分析新合成蛋白,可觀察到感染後 12 小時呈現幾乎全面的轉譯關閉。 且此細胞轉譯關閉與 PABP 的入核、降解和 NNV coat protein 的出現與入核具有密切的重 疊相關性。接著以 rNNV CP 單一表現載體轉染至 GB 細胞,發現 rNNV CP 之表現的確導 致細胞轉譯關閉與PABP之入核與降解。而透過免疫共沉澱可進一步證明NNV CP與PABP 確實存在交互作用,更以 Far-Western 確認兩者間的結合區位於 NNV coat protein 之 1-150 aa 與 PABP 的 370-538 aa。在病毒感染後期,我們觀察到 PABP 逐漸降解。此病毒感染後 的 PABP 降解現象以 MG132 抑制和 anti-ubiquitin 共沉澱分析證實是經由 26S-proteasome 進 行降解。總結,NNV 透過 coat protein 與 PABP 的交互作用導致 PABP 的核轉置與降解, 進而劫持宿主 GB 細胞的轉譯。zh_TW
dc.description.abstractNervous necrosis virus (NNV) belonging to Betanodavirus of the Nodaviridae family is the caused agent of viral nervous necrosis (VNN) disease in larvae and juvenile of marine fish. The devastating infection led to the huge economic damage to aquaculture industry. However, the hijacking mechanism of NNV on its host is less understood. We found that the host translation had been hijacked and shutoff after NNV infection in grouper brain(GB) cells by using puromycin labeling SUnSET detection. The SUnSET assay showed that the high moi NNV infection result in GB cell translation shutdown 6 hpi and almost shutoff 12 hpi. The NNV genomes and mRNA contain a cap structure on their 5’-terminal as that of cellular canonical mRNA, but no poly(A)- tail on their 3’-terminal. Furthermore, the result of LC/MS/MS identified associated proteins by recombinant NNV coat protein affinity column showed that the polyadenylate binding protein (PABP) is highly associated with NNV coat protein. Therefore, we wonder whether PABP is the target for NNV to shutoff host translation. The orange-spotted grouper PABP gene encodes 633 aa open reading frame with 69, 360 dalton in molecular weight and contains four RNA recognition motifs, one proline-rich linker and one C-terminal domain. The PABP is an important factor for canonical translation. We found that the PABP of orange-spotted grouper is highly conservative with that of human in nucleotide and amino acid sequence with 94.0% and 99.8% similarity, respectively. From immunocytochemistry result, we observed that the appearance and nucleus localization of NNV coat protein is highly correlative to the PABP nucleus relocalization and degradation as well as host translation shutoff in NNV-infected GB cells. The nucleus relocalization and degradation of PABP were further proved by the only expressed recombinant NNV coat protein in GB cells. Next, the coimmunoprecipitation experiment confirmed the interaction between NNV coat protein and PABP, and the interaction regions were further defined to NNV coat protein 1-150 aa and PABP 370-538 aa region by Far-Western blot. In the late stage of infection, the PABP is gradually degraded. The inhibition of PABP degradation by the treatment of MG132, and the finding of truncated form PABP in the anti-ubiquitin immunoprecipitation suggested that the PABP degradation induced by NNV infection is through ubiquitin-26S proteasome pathway. Our results supported that the NNV coat protein hijack PABP to relocalize into nucleus and mediated its late infection stage degradation which cause the host translation shutoff eventually.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:41:33Z (GMT). No. of bitstreams: 1
U0001-0308202020421000.pdf: 3220624 bytes, checksum: 207668f97467f493a9bfdf55269db2e5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄
中文摘要... I
英文摘要...II
目錄... IV
圖目次... VI
表目次...VII
第一章、前言
1.1 神經壞死病毒... 1
1.2 真核細胞之轉譯機轉... 1
1.3 病毒之感染策略 ... 3
1.3.1 調控宿主轉譯關閉... 3
1.3.2 病毒自身轉譯途徑... 4
1.4 多聚腺苷酸結合蛋白... 5
1.5 研究動機... 6
第二章、材料與方法
2.1 GB 細胞之培養和 NNV 病毒之繁殖... 7
2.1.1 GB 細胞之解凍與培養... 7
2.1.2 GB 細胞繼代 ... 8
2.1.3 NNV 病毒繁殖與定量... 8
2.2 質體製備與純化... 8
2.2.1 轉型作用... 10
2.2.2 純化小量質體... 10
2.2.3 純化大量質體.... 11
2.3 重組 NNV coat protein 與 PABP 之表現與純化... 11
2.3.1 誘導重組蛋白表現... 14
2.3.2 重組蛋白確認... 14
2.3.3 Sodium dodecyl sulfate polyacrylamide gel eletrophoresis (SDS-PAGE) ... 14
2.3.4 表現大量重組蛋白... 15
2.3.5 製備親和性鎳離子管柱... 15
2.3.6 純化大量重組蛋白... 15
2.4 蛋白質定量 ... 16
2.5 銀染... 16
2.6 西方墨點法... 17
2.7 遠西方墨點法... 19
2.8 免疫沉澱... 20
2.9 轉染... 21
2.10 免疫螢光染色... 22
2.11 原位雜合... 23
2.11.1 Dig-labeling RNA probe 製備與純化 ... 25
2.11.2 原位雜合步驟... 26
第三章、 結果
3.1 神經壞死病毒感染造成 GB cells 轉譯關閉... 28
3.2 點帶石斑魚 polyadenylate binding protein (PABP)之序列分析 ... 28
3.3 神經壞死病毒感染後 PABP、宿主轉譯與 NNV coat protein 表現的相關性... 29
3.4 NNV coat protein 介導宿主細胞之轉譯關閉... 29
3.5 PABP 與 NNV coat protein 之共沉澱結合確認... 30
3.6 PABP 與 NNV coat protein 之結合區界定 ... 30
3.7 PABP 的降解與 ubquitin-26S proteasome 有關... 31
第四章、討論... 33
第五章、參考文獻... 36
dc.language.isozh-TW
dc.subject神經壞死病毒zh_TW
dc.subject殼蛋白zh_TW
dc.subject轉譯作用zh_TW
dc.subject26S proteasomezh_TW
dc.subject多聚腺苷酸結合蛋白(PABP)zh_TW
dc.subjectcoat proteinen
dc.subjectNervous necrosis virus (NNV)en
dc.subject26S proteasomeen
dc.subjectpolyadenylate binding protein (PABP)en
dc.subjecttranslationen
dc.title神經壞死病毒外殼蛋白與多聚腺苷酸結合蛋白於石斑魚腦細胞之交互作用zh_TW
dc.titleInteraction of nervous necrosis virus coat protein with polyadenylate binding protein in grouper brain cellen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳惠南(Huey-Nan Wu),王永松(Yung-Song Wang),鄭朝安(Chao-An Cheng)
dc.subject.keyword神經壞死病毒,殼蛋白,多聚腺苷酸結合蛋白(PABP),26S proteasome,轉譯作用,zh_TW
dc.subject.keywordNervous necrosis virus (NNV),coat protein,polyadenylate binding protein (PABP),26S proteasome,translation,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202002314
dc.rights.note未授權
dc.date.accepted2020-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202020421000.pdf
  未授權公開取用
3.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved