Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76954
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞(Wen-Jen Lin)
dc.contributor.authorGuan-Zhen Heen
dc.contributor.author何冠蓁zh_TW
dc.date.accessioned2021-07-10T21:41:29Z-
dc.date.available2021-07-10T21:41:29Z-
dc.date.copyright2020-09-04
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citation1.Akli S, Van Pelt CS, Bui T, Meijer L and Keyomarsi K. CDK2 is required for breast cancer mediated by the low-molecular weight isoform of cyclin E. Cancer Res. 2011;71:3377-86.
2.Aldosss IT, Tashi T and Ganti AK. Seliciclib in malignancies. Expert Opin. Investig. Drugs. 2009;18(12):1957-65.
3.Ali B, Kpa KL, Heluany CS, et al. Cytotoxic effects of a novel maleimide derivative on epithelial and tumor cells. Bioorg. Chem. 2017;72:199-207.
4.Allnutt AB, Waters AK, Kesari S and Yenugonda VM. Physiological and pathological roles of CDK5: potential directions for therapeutic targeting in neurodegenerative diseases. ACS Chem. Neurosci. 2020;11:1218-30.
5.Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumor sites. J. Pharm. Pharmacol. 2019;71:1185-98.
6.Bai J, Li Y and Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 2017;14:4.
7.Benson C, White J, De Bono J, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-roscovitine), administered twice daily for 7 days every 21 days. Br. J Cancer. 2007;96:29:37.
8.Bi Y, Liu L, Lu Y, et al. T7 peptide-functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma. Appl. Mater. Interfaces. 2016;8:27465-73.
9.Bourassa P, Alata W, Tremblay C, et al. Transferrin receptor-mediated uptake at the blood-brain barrier is not impaired by Alzheimer's disease neuropathology. Mol. Pharm. 2019;16:583-94.
10.Byeon HJ, Thao le Q, Lee S, Min SY, Lee ES, Shin BS, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J. Control. Release. 2016;225:301-13.
11.Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650-61.
12.Chakravarti A, Delaney MA, Noll E, et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 2001;7:2387-95.
13.Cheng ZH, Fu KY and Ip NY. Synaptic roles of CDK5: implications in high cognitive functions and neurodegenerative diseases. Neuron. 2006;50:13-8.
14.Chagniel L, Robitaille , Lebel M and CyrM. Striatal inhibition of calpains prevents levodopa-induced neurochemical changes and abnormal involuntary movements in the hemiparkinsonian rat model. Neurobiol. Dis. 2012;45:645-55.
15.Cicenas J, Kalyan K, Sorokinas A, et al. Roscovitine in cancer and other diseases. Ann. Transl. Med. 2015;3(10):135.
16.Clark AJ, Wiley DT, Zuckerman JE, et al. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci U S A. 2016;113(14):3850-4.
17.Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces. 2016;8(47):32159-69.
18.Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A and Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012;161(2):505-22.
19.Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta Gen. Subj. 2012;1820:291-317.
20.Datasheet of seliciclib from LC laboratories.
21.de la Motte S and Gianella-Borradori A. Pharmacokinetic model of R-roscovitine and its metabolite in healthy male subjects. Int J Clin Pharmacol Ther. 2004; 42:232-9.
22.DrugBank Database. Seliciclib, https://www.drugbank.ca/drugs/DB06195 (accessed on July 12, 2020)
23.Ferlemann FC, Menon V, Condurat AL, et al. Surface marker profiling of SH-SY5Y cells enables small molecule screens identifying BMP4 as a modulator of neuroblastoma differentiation. Sci. Rep. 2017;7:13612.
24.GeneCards website, the human gene database. https://www.genecards.org/Search/Keyword?queryString=transferrin%20receptor (cited date: 2020/06/25)
25.Gregory JD. The stability of N-ethylmaleimide and its reaction with sulfhydryl groups. J. Am. Chem. Soc. 1955;77:3922-3.
26.Gupta KK and Singh SK. CDK5: a main culprit in neurodegeneration. Int. J. Neurosci. 2019;129(12):1192-7.
27.Han L, Huang R, Liu S, Huang S and Jiang C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol. Pharmaceutics. 2010;7(6):2156-65.
28.Johnsen KB, Burkhart A, Melander F, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 2017;7:10396.
29.Keyomarsi K, Tucker SL, Buchholz TA, et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med. 2002;347:1566-75.
30.Korecka JA, van Kesteren RE, Blaas E, et al. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS ONE. 2013;8(5):e63862.
31.Kovalevich J., Langford D. (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. In: Amini S., White M. (eds) Neuronal cell culture. Methods in molecular biology (methods and protocols), vol 1078. Humana Press, Totowa, NJ.
32.Kulkarni SA and Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 2013;30:2512-22.
33.Lajoie JM and Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015;55:613-31.
34.Le Tourneau C, Faivre S, Laurence V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinases inhibitor, in patients with advanced malignancies. Eur. J. Cancer. 2010;46:3243-50.
35.Liang M, Gao C, Wang Y, et al. Enhanced blood-brain barrier penetraiton and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. Drug Deliv. 2018;25(1):1652-63.
36.Lin WJ and Kao LT. Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opin. Drug Deliv. 2014;11(10):1537-50.
37.Liu J, Yang J, Xu Y, et al. Roscovitine, a CDK5 inhibitor, alleviates sevoflurane-induced cognitive dysfunction via regulation Tau/GSK3ß and ERK/PPARr/CREB signaling. Cell Physiol. Biochem. 2017;44:423-35.
38.Lopes FM, Schröder R, Frota Jr, et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain research. 2010;1337:85-94.
39.Malumbres M and Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009;9:153-63.
40.Martinez-Jothar L, Doulkeridou S, Schiffelers RM, et al. Insights into maleimide-thiol conjugation chemistry: conditions for efficient surface functionalization of nanoparticles for receptor targeting. J. Control. Release. 2018;282:101-9.
41.McClue SJ and Stuart I. Metabolism of the trisubstituted purine cyclin-dependent kinase inhibitor seliciclib (r-roscovitine) in vitro and in vivo. Drug Metab. Dispos. 1008;36(3):561-70.
42.Mendsaikhan A, Takeuchi S,Walker DG and Tooyama I. Differences in gene expression profiles and phenotypes of differentiated SH-SY5Y neurons stably overexpressing mitochondrial ferritin. Front. Mol. Neurosci. 2019;11:470.
43.Milane L, Duan Z and Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharm. 2011;8(1):185-203.
44.Moura RP, Martins C, Pinto S, Sousa F and Sarmento B. Blood-brain barrier receptros and transporters: an insight on their funciton and how to exploit them through nanotechnology. Expert Opin Drug Deliv. 2019;16(3):271-85.
45.National Center for Biotechnology Information. PubChem Database. Seliciclib, CID=160355, https://pubchem.ncbi.nlm.nih.gov/compound/Seliciclib (accessed on July 12, 2020)
46.Peyressatre M, Prevel C, Pellerano M and Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cacners (Basel). 2015;7(1):179-237.
47.Presant CA, Blayney D, Proffitt RT, et al. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet. 1990;335(8701):1307-9.
48.Presant CA, Proffitt RT, Turner AF, et al. Successful imaging of human cancer with indium-111-labled phospholipid vesicels. Cancer. 1988;62(5):905-11.
49.Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019;12:1019.
50.Rajnai Z, Mehn D, Beery E, et al. ATP-binding B1 tranports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor. Drug Metab. Dispos. 2010;38(11):2000-6.
51.Rathbone, Hadgraft, Roberts and Lane. Mathmatical models of drug release. In: Bruschi ML. Modified-release drug delivery technology. 2nd ed. New York: CRC Press; 2008. P. 63-86.
52.Saez A, Guzmán M, Molpeceres J and Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drug. Eur. J. Pharm. Biopharm. 2000;50(3):379-87.
53.Saraiva C, Parca C, Ferreira R and Santos T. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release. 2016;235:34-47.
54.Schlachetzki JC, Saliba SW and Oliveira AC. Studying neurodegenerative diseases in culture models. Rev. Bras. Psiquiatr. 2013;35(Suppl 2).
55.Shen Y, Li X, Dong D, Zhang B, Xue Y and Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 2018;8(6):916-31.
56.Shipley MM, Mangold CA and Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 2016;108:e53193.
57.Srinivasan B., Kolli A.R. (2019) Transepithelial/Transendothelial Electrical Resistance (TEER) to Measure the Integrity of Blood-Brain Barrier. In: Barichello T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY.
58.Sun H and Wang S. Transferrin receptors targeting peptide (T7 peptide) surface-modified sorafenib nanoliposomes enchance the anti-tumor effect in colorectal cancer. Pharm. Dev. Technol. Published on 2020/06/26.
59.Sweeney MD, Sagare AP and Zlokovic BV. Blood-brain barrier breakdown in Alzheimer's disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018;14:133-50.
60.Symon Z, Peyser A, Tzemach D, et al. Selective delivery of doxorubicin to patients with breast metastases by stealth liposomes. Cancer. 1999;86(1):72-8.
61.Tadesse S, Caldon EC, Tilley W and Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J. Med. Chem. 2019;62;4233-51.
62.Taluja A, Youn YS and Bae YH. Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. J. Mater. Chem. 2007;17:4002-14.
63.Tront JS, Huang Y, Hoffman B and Liebermann. Gadd45a levels in human breast cancer are hormone receptor dependent. J. Transl. Med. 2013;11:131-7.
64.Vasconcelos A, Vega E, Perez Y, et al. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int. J. Nanomedicine. 2015;10:609-31.
65.Vita M, Meurling L, Pettersson T, et al. Analysis of roscovitine using high performance liquid chromatography and UV-detection method: pharmacokinetics of roscovitine in rat. J. Pharmaceut. Biomed. 2004;34:425-31.
66.Wang J, Yang T, Xu G, et al. Cyclin-dependent kinase 2 promotes tumor proliferation and induces radio resistance in glioblastoma. Tansl. Oncol. 2016;9(6):548-56.
67.Wang SS, Meng Y, Li CY, et al. Receptor-mediated drug delivery systems targeting to glioma. Nanomaterials. 2016;6(3):3.
68.Wang Z, Zhao Y, Jiang Y, et al. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci. Rep. 2015;29(5):12651.
69.Webb JL. N-ethylmaleimide. In: Enzyme and metabolimic inhibitors. Academic Press, New YorK; 1966. p. 337-65.
70.Wei L, Guo XY, Yang T, Yu MZ, Chen DW and Wang JC. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int. J. Pharm. 2016;510(1):394-405.
71.Whittaker SR, Mallinger A, Workman P, et al. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther. 2017;173:83-105.
72.Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release. 2015;200:138-57.
73.Wolfram J and Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85-98.
74.Xicoy H, Wieringa B and Martens GJ. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol. Neurodegener. 2017;12:10.
75.Xie Y, Killinger B, Moszczynska A and Merkel OM. Targeted Delivery of siRNA to Transferrin Receptor Overexpressing Tumor Cells via Peptide Modified Polyethylenimine. Molecules. 2016;21(10). pii: E1334.
76.Yang L, Fang D, Chen H, et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget. 2015;6:20801-12.
77.Yu MZ, Pang WH, Yang Y, et al. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur. J. Pharm. Sci. 2016;92:39-48.
78.Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752-6.
79.Yue J, Liu S, Wang R, et al. Fluorescence-labeled immunomicelles: preparation, in vivo biodistribution, and ability to cross the blood-brain barrier. Macromol Biosci. 2012;12(9):1209-19.
80.Zhelev N, Trifonov D, Wang S, Hassan M, El Serafi I, Mitev V. From roscovitine to CYC202 to seliciclib – from bench to bedside: discovery and development. Biodiscovery. 2013;10:1.


dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76954-
dc.description.abstract本研究選用之細胞週期素激酶抑制劑seliciclib (CDK1, 2, 5, 7, and 9 inhibitor)根據文獻報導具備抗癌以及神經保護作用,利用癌細胞、腦內皮細胞以及分化後神經母細胞瘤細胞過度表現運鐵蛋白受體(Transferrin receptor, Tf)性質,將藥物包覆於表面以標靶該受體的T7胜肽修飾之奈米顆粒,以促進奈米顆粒被癌細胞吞噬能力以及通過血腦障壁(Blood-brain barrier, BBB)到達目標細胞產生神經保護之作用。
本研究以聚乳酸-甘醇酸 (poly(D, L-lactide-co-glycolide), PLGA)作為奈米顆粒骨架,表面接枝馬來醯胺-聚乙二醇-胺(maleimide poly(ethylene glycol) amine, Mal-PEG-NH2),接枝率為60.6±4.0 mol%,再以溶媒揮發法製備奈米顆粒,並透過Cys*-T7上的硫醇基與馬來醯胺上的碳雙鍵反應,進行奈米顆粒表面修飾,T7的接枝率為32.7±3.2 mol%。奈米顆粒產率皆可達70%以上,未修飾以及T7修飾之奈米顆粒粒徑分別為95.8±2.0 nm與98.8±1.9 nm,皆呈單一峰粒徑分佈(PdI < 0.1),表面電荷因T7的修飾由-25.0±3.0 mV上升為0.8±2.2 mV。
為探討以T7修飾之奈米顆粒對於不同癌細胞的標靶能力,於各細胞株進行吞噬實驗,結果顯示在T7胜肽的修飾下,奈米顆粒的吞噬效率在運鐵蛋白受體過度表達的癌細胞有顯著的提升,其中MDA-MB-231乳癌細胞可提升吞噬效率13.3倍,其次依序為SKOV-3卵巢癌細胞提升6.3倍、U87-MG神經膠質瘤細胞提升4.5倍;但在運鐵蛋白受體低表現量之A549非小細胞肺癌細胞,其吞噬效率僅提升2.5倍。
同樣的,在神經保護的研究中,T7修飾之奈米顆粒對於bEnd.3腦內皮細胞以及分化前後SH-SY5Y神經母細胞瘤細胞的標靶能力,也以流式細胞儀進行定量,結果發現在bEnd.3細胞中,有T7修飾相較於未修飾之奈米顆粒,其吞噬效率提升4.9倍;相對於L929運鐵蛋白受體低表現量之對照細胞僅提升1.2倍,顯示T7修飾之奈米顆粒可藉由標靶運鐵蛋白受體提升細胞之吞噬量。另外,分化前後SH-SY5Y細胞的吞噬效率提升分別為10.9倍以及26.6倍。
為探討奈米顆粒對於血腦障壁的穿透能力,採用穿透式細胞培養盤(Transwell plate)建立bEnd.3腦內皮細胞以及分化後SH-SY5Y擬神經細胞的共同培養系統,給予未修飾以及胜肽修飾奈米顆粒,發現T7修飾有助於奈米顆粒穿透體外血腦障壁並進入目標神經細胞,除此之外,在小鼠體內分佈試驗中,也發現胜肽修飾的奈米顆粒能夠進入腦中並累積。
進一步將奈米顆粒包覆seliciclib,未修飾以及T7修飾奈米顆粒粒徑分別為115.7±5.5 nm與127.3±0.7 nm(PdI < 0.2),表面電荷分別為-30.8±9.2 mV和-20.0±4.2 mV;藥物包覆率皆可達60%以上,且藥物負載率可達12.3%;分別於4°C水溶液以及冷凍乾燥後保存於-20°C的4週安定性試驗顯示其粒徑無顯著變化。此外,在體外釋放試驗中,在pH 5.5環境的奈米載體釋放速率較pH 7.4的環境快。
此外,48小時之癌細胞毒殺試驗結果顯示,U87-MG、MDA-MB-231以及SKOV-3細胞在給予經T7修飾的包藥奈米顆粒組別,其IC50分別降為無胜肽修飾的包藥奈米顆粒的0.3、0.5以及0.7倍;而在A549細胞,有無胜肽修飾對於其IC50並無顯著差異。
在評估seliciclib對神經保護的療效方面,本研究採用MPP+神經毒素誘發分化後SH-SY5Y細胞產生神經毒性,在預先給予分化後SH-SY5Y細胞T7修飾的包藥奈米顆粒組別兩小時後再給予MPP+,使原先對MPP+的IC50(0.75±0.06 µg/mL)有顯著之提升,IC50分別為預先給seliciclib純藥:1.11±0.19 µg/mL、seliciclib@PPM NPs:0.85±0.12 µg/mL、seliciclib@PPM NPs-Cys*-T7:3.15±0.69 µg/mL。
根據以上結果,可支持使用運鐵蛋白受質標靶胜肽於遞送藥物至上述目標細胞並產生癌細胞毒殺以及神經保護的潛力。
zh_TW
dc.description.abstractSeliciclib, a broad CDKs inhibitor (including CDK1, CDK2, CDK5, CDK7 and CDK9), exerted its potential role in cancer treatment and neuroprotection for neurodegenerative diseases. In addition, taking advantage of overexpressive transferrin receptor (TfR) on most cancer cells, bEnd.3 endothelial cells and differentiated SH-SY5Y neuroblastoma cells, T7 peptide, a TfR targeting ligand, was served to facilitate the NPs internalized by targeting cells for better anti-cancer efficacy and blood-brain barrier (BBB) penetrating ability promising the potential in neuroprotection effect.
In this study, poly(D, L-lactide-co-glycolide) (PLGA) firstly conjugated with maleimide poly(ethylene glycol) amine (Mal-PEG-NH2) was served as the backbone of the nanoparticles (NPs). All NPs were prepared by solvent evaporation method, further conjugated with Cys*-T7 peptide through formation of thioether bond with maleimide on NPs. The yields of all NPs were above 70% and particle sizes ranged from 95.8±2.0 nm to 98.8±1.9 nm after Cys*-T7 peptide-conjugation with narrow size distribution (PdI<0.1); the zeta potentials of NPs increased from -25.0±3.0 to 0.8±2.2 mV attributed to the positively charged amino acids of T7 peptide.
To investigate the targeting ability of T7 peptide, the cellular uptake of NPs study was proceeded. The efficiency of NPs uptaken by cells was elevated in T7-modified NPs compared to unmodified NPs among highly TfR-expressive cancer cells, especially for MDA-MB-231 breast cancer cells followed by SKOV-3 ovarian cancer cells and U87-MG glioma cells. In contrast, A549 non-small cell lung cancer cells served as negative control of TfR-expression, displayed the lowest improvement of uptake efficiency after T7-conjugated.
Furthermore, for bEnd.3 cells and SH-SY5Y cells, the higher uptake efficiency of T7-modified NPs compared to unmodified ones was observed; on the contrary, only slight change was observed in L929 negative cells. There findings implied that Cys*-T7 peptide strengthened the cellular uptake ability through recognition of TfR.
The in vitro BBB model was established with co-cultured bEnd.3 cells and differentiated SH-SY5Y cells to evaluate the penetrating ability of NPs. Higher amount of NPs internalized by both bEnd.3 and differentiated SH-SY5Y cells was observed with T7-conjugated NPs compared to unconjugated ones.
Further encapsulating seliciclib in the NPs, the particles size increased approximately 20 nm, with narrow size distribution; the zeta potentials of NPs increased from -30.8±9.2 to -20.0±4.2 mV. The drug encapsulation efficiency reached 60.0±1.2% and drug loading was approximate 12.3±0.5%. The 4-week stability study demonstrated the great stability of drug-loaded NPs. The in vitro release study showed that seliciclib released faster from NPs in pH 5.5 than pH 7.4 release medium.
In 48-hour cytotoxicity assay, the IC50 of seliciclib@NPs-T7 showed decrease by approximately two folds than seliciclib@NPs in U87-MG, MDA-MB-231 and SKOV-3 cells. However, there was no significant difference in IC50 between seliciclib@NPs-peptide and seliciclib@NPs in A549 cells.
The neuroprotection efficacy of seliciclib@NPs against MPP+-induced neurotoxicity was evaluated by treatment with seliciclib or seliciclib@NPs prior to MPP+ exposure, the IC50 of MPP+ was rescued by 1.48-fold, 1.13-fold and 4.2-fold for raw seliciclib, seliciclib@PPM NPs and seliciclib@PPM NPs-Cys*-T7, respectively.
In conclusion, Cys*-T7 peptide-modified NPs provided the targeting delivering platform for either cancer cells or BBB-penetration and also promised the potentials of seliciclib for cancer therapy and neuroprotection.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:41:29Z (GMT). No. of bitstreams: 1
U0001-0308202021552600.pdf: 6604762 bytes, checksum: 710b0cccf174af82c7637dbb7c78514f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書---------------------------------------------------------------------I
致謝-------------------------------------------------------------------------------II
中文摘要---------------------------------------------------------------------------IV
Abstract---------------------------------------------------------------------------VI
Table of Contents----------------------------------------------------------------VIII
List of Figures-------------------------------------------------------------------XIV
List of Tables-------------------------------------------------------------------XXII
Abbreviation----------------------------------------------------------------------XXV
Chapter I Introduction--------------------------------------------------------------1
1.1 Cyclin-dependent kinase (CDK)---------------------------------------------------1
1.1.1 Dysregulated interphase CDK2 in cancer development----------------------------3
1.1.2 Role of CDK5 in neurodegenerative diseases------------------------------------5
1.2 Seliciclib/ CYC202/ (R) roscovitine---------------------------------------------7
1.2.1 Efficacy in cancer therapy----------------------------------------------------9
1.2.2 Efficacy in neurodegenerative diseases---------------------------------------10
1.3 Nanomedicine in cancer therapy-------------------------------------------------10
1.3.1 Multifunctionality-----------------------------------------------------------10
1.3.1.1 Solubilization and sustained drug release----------------------------------11
1.3.1.2 Protection from degradation------------------------------------------------11
1.3.1.3 Immunoevasion--------------------------------------------------------------11
1.3.1.4 Combination therapy--------------------------------------------------------11
1.3.1.5 Actively targeting---------------------------------------------------------11
1.3.1.6 Triggered activation-------------------------------------------------------12
1.3.2 Mass transport characteristics-----------------------------------------------12
1.3.2.1 Enhanced permeability and retention (EPR) effect---------------------------12
1.3.2.2 Tumor hemodynamics---------------------------------------------------------12
1.4 Blood brain barrier (BBB) -----------------------------------------------------13
1.4.1 Pathological BBB in neurodegenerative diseases-------------------------------13
1.4.2 Drug delivery strategy-------------------------------------------------------14
1.5 Transferrin receptor (TfR)-----------------------------------------------------14
1.5.1 TfR expressed on various cancer cells----------------------------------------15
1.5.2 TfR applied in BBB-penetrating strategy--------------------------------------17
1.5.3 T7 peptide-------------------------------------------------------------------19
1.6 Materials for nanomedicines----------------------------------------------------19
1.6.1 Poly(lactic-co-glycolic acid ) (PLGA)----------------------------------------19
1.6.2 Maleimide poly(ethylene glycol) amine (Maleimide-PEG-NH2)--------------------21
Chapter II Motivation and purpose--------------------------------------------------22
Chapter III Materials--------------------------------------------------------------25
3.1 Chemical reagents--------------------------------------------------------------25
3.2 Cell culture-------------------------------------------------------------------27
3.3 Equipment and software---------------------------------------------------------29
3.4 Consumables--------------------------------------------------------------------31
3.5 Solution and buffer preparation------------------------------------------------31
Chapter IV Methods-----------------------------------------------------------------34
4.1 Synthesis and characterization of PLGA-PEG-maleimide---------------------------36
4.1.1 Activation of PLGA-----------------------------------------------------------36
4.1.2 Synthesis of PLGA-PEG-maleimide----------------------------------------------37
4.1.3 Characterization-------------------------------------------------------------39
4.1.3.1 Hydrogen nuclear magnetic resonance (1H-NMR)-------------------------------39
4.1.3.2 Fourier-transforms infrared (FTIR)-----------------------------------------39
4.1.3.3 Gel permeation chromatography (GPC)----------------------------------------39
4.2 Preparation and characterization of blank NPs----------------------------------40
4.2.1 Physicochemical properties---------------------------------------------------42
4.2.1.1 Optimization and determination of Cys*-T7 conjugation efficiency-----------43
4.2.1.2 Dynamic light scattering (DLS) measurement---------------------------------43
4.3 Preparation and characterization of seliciclib-loaded NPs----------------------44
4.3.1 Physicochemical properties of seliciclib-loaded NPs--------------------------44
4.3.2 Transmission electronic microscopy (TEM)-------------------------------------44
4.3.3 Drug encapsulation and loading efficiency------------------------------------44
4.3.4 Stability study--------------------------------------------------------------45
4.3.4.1 Stability in 4°C ddH2O-----------------------------------------------------45
4.3.4.2 Stability in -20°C after lyophilization------------------------------------45
4.4 In vitro release study---------------------------------------------------------46
4.4.1 Quantification of released seliciclib----------------------------------------47
4.4.2 In vitro kinetic models (Rathbone et al., 2015)------------------------------48
4.5 In vitro cellular model for anti-cancer study----------------------------------50
4.5.1 Determination of transferrin receptor (TfR) expression level-----------------50
4.5.2 Internalization of peptide Cys*-T7-------------------------------------------51
4.5.3 Cellular uptake of blank NPs-------------------------------------------------52
4.5.4 Cytotoxicity-----------------------------------------------------------------53
4.5.4.1 Cytotoxicity of blank NPs--------------------------------------------------53
4.5.4.2 Cytotoxicity of seliciclib and seliciclib@NPs------------------------------54
4.6 SH-SY5Y cellular model for neurodegenerative disease study---------------------55
4.6.1 Establishment of mature neuron-phenotype SH-SY5Y model-----------------------55
4.6.2 Identification of transferrin receptor (TfR)---------------------------------56
4.6.3 Internalization of Cys*-T7 peptide-------------------------------------------56
4.6.4 Cellular uptake of blank NPs-------------------------------------------------57
4.6.5 In vitro transport study-----------------------------------------------------58
4.6.5.1 Establishment of in vitro BBB model----------------------------------------58
4.6.5.2 Transport efficiency of blank Cys*-T7-conjugated NPs-----------------------59
4.6.5.3 Transport efficiency of raw seliciclib and seliciclib@NPs------------------60
4.6.6 Cytotoxicity-----------------------------------------------------------------61
4.6.6.1 Cytotoxicity of blank NPs for proliferative and differentiated SH-SY5Y-----61
4.6.6.2 Cytotoxicity of seliciclib and seliciclib@NPs for proliferative and differentiated SH-SY5Y-------------------------------------------------------------62
4.6.6.3 Neuroprotection effect on MPP+-induced Parkinsonian SH-SY5Y model----------63
4.7 Statistics---------------------------------------------------------------------64
Chapter V Results------------------------------------------------------------------65
5.1 Synthesis and characterization of PLGA-PEG-maleimide---------------------------65
5.1.1 Activation of PLGA-----------------------------------------------------------65
5.1.1.1 Gel permeation chromatography (GPC)----------------------------------------65
5.1.2 Conjugation of NH2-PEG-maleimide---------------------------------------------66
5.1.2.1 Hydrogen nuclear magnetic resonance (1H-NMR)-------------------------------66
5.1.2.2 Fourier-transforms infrared (FTIR)-----------------------------------------69
5.1.2.3 Gel permeation chromatography (GPC)----------------------------------------71
5.2 Characterization of blank nanoparticles (NPs)----------------------------------72
5.2.1 Optimization and determination of Cys*-T7 conjugation efficiency-------------72
5.2.2 Dynamic light scattering (DLS) measurement-----------------------------------73
5.3 Characterization of seliciclib-loaded NPs (seliciclib@NPs)---------------------74
5.3.1 Quantification of seliciclib by HPLC-----------------------------------------74
5.3.2 Optimization of seliciclib@NPs formulations----------------------------------75
5.3.3 Characterization of optimized seliciclib@NPs---------------------------------78
5.3.4 Stability study--------------------------------------------------------------80
5.3.4.1 Stability of seliciclib@NPs in 4ºC ddH2O-----------------------------------80
5.3.4.2 Stability of lyophilized seliciclib@NPs------------------------------------82
5.4 In vitro release study---------------------------------------------------------83
5.4.1 Quantification of released seliciclib----------------------------------------83
5.4.2 In vitro release of seliciclib@NPs at pH 7.4 and pH 5.5 release buffer-------84
5.5 In vitro cellular model for anti-cancer study----------------------------------90
5.5.1 Determination of transferrin receptor (TfR) expression level-----------------90
5.5.2 Internalization of Cys*-T7 peptide-------------------------------------------92
5.5.3 Cellular uptake of blank NPs-------------------------------------------------96
5.5.4 Cytotoxicity-----------------------------------------------------------------99
5.5.4.1 Cytotoxicity of blank NPs--------------------------------------------------99
5.5.4.2 Cytotoxicity of seliciclib@NPs--------------------------------------------100
5.6 SH-SY5Y cellular model for neurodegenerative disease study--------------------104
5.6.1 Establishment of mature neuron-phenotype SH-SY5Y model----------------------104
5.6.2 Identification of transferrin receptor (TfR)--------------------------------105
5.6.3 Internalization of peptide Cys*-T7------------------------------------------107
5.6.4 Cellular uptake of blank NPs------------------------------------------------111
5.6.5 In vitro transport study----------------------------------------------------114
5.6.5.1 Establishment of in vitro BBB model---------------------------------------114
5.6.5.2 Transport efficiency of blank T7*-conjugated NPs--------------------------115
5.6.5.3 Transport efficiency of free seliciclib and seliciclib@NPs----------------119
5.6.6 Cytotoxicity----------------------------------------------------------------120
5.6.6.1 Cytotoxicity of blank NPs-------------------------------------------------120
5.6.6.2 In vitro cytotoxicity of seliciclib and seliciclib@NPs for L929 and bEnd.3 cells-----------------------------------------------------------------------------120
5.6.6.3 In vitro cytotoxicity of seliciclib and seliciclib@NPs for proliferative and differentiated SH-SY5Y cells------------------------------------------------------122
5.6.6.4 Neuroprotection effect on MPP+ induced Parkinsonian SH-SY5Y model---------123
Chapter VI Discussions------------------------------------------------------------127
6.1 Synthesis and characterization of PLGA-PEG-maleimide--------------------------127
6.2 Preparation and characterization of NPs---------------------------------------127
6.3 In vitro release study--------------------------------------------------------127
6.4 In vitro cellular model for anti-cancer study---------------------------------130
6.4.1 CDK2 and CDK5 activity in various cancer cell lines-------------------------130
6.4.2 Correlation between TfR expression and characteristic uptake ability of NPs-131
6.5 SH-SY5Y cellular model for neurodegenerative disease study--------------------133
6.5.1 In vitro BBB model establishment--------------------------------------------134
6.5.2 Mature neuron phenotype (differentiated) SH-SY5Y cells----------------------135
Chapter VII Conclusions-----------------------------------------------------------137
Chapter VIII References-----------------------------------------------------------141
dc.language.isozh-TW
dc.subject胜肽修飾奈米顆粒zh_TW
dc.subject過度表現運鐵蛋白受體之癌症zh_TW
dc.subject神經退化性疾病zh_TW
dc.subject細胞週期素激酶抑制劑zh_TW
dc.subjectTfR-overexpressive cancersen
dc.subjectselicicliben
dc.subjectT7 peptideen
dc.subjectnanoparticlesen
dc.subjectneurodegenerative diseasesen
dc.title胜肽修飾之奈米顆粒包覆細胞週期素激酶抑制劑於癌症治療及神經保護之研究zh_TW
dc.titleThe study of peptide-functionalized nanoparticles encapsulated cyclin-dependent kinases inhibitor in cancer therapy and neuroprotectionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方嘉佑(Jia-You Fang),邱士娟(Shih-Jiuan Chiu),張琳巧(Lin-Chau Chang)
dc.subject.keyword胜肽修飾奈米顆粒,細胞週期素激酶抑制劑,神經退化性疾病,過度表現運鐵蛋白受體之癌症,zh_TW
dc.subject.keywordseliciclib,T7 peptide,nanoparticles,neurodegenerative diseases,TfR-overexpressive cancers,en
dc.relation.page149
dc.identifier.doi10.6342/NTU202002323
dc.rights.note未授權
dc.date.accepted2020-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-0308202021552600.pdf
  未授權公開取用
6.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved